{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveDataTypeable, DeriveGeneric #-}
module Statistics.Distribution.Gamma
(
GammaDistribution
, gammaDistr
, gammaDistrE
, improperGammaDistr
, improperGammaDistrE
, gdShape
, gdScale
) where
import Control.Applicative
import Data.Aeson (FromJSON(..), ToJSON, Value(..), (.:))
import Data.Binary (Binary(..))
import Data.Data (Data, Typeable)
import GHC.Generics (Generic)
import Numeric.MathFunctions.Constants (m_pos_inf, m_NaN, m_neg_inf)
import Numeric.SpecFunctions (incompleteGamma, invIncompleteGamma, logGamma, digamma)
import qualified System.Random.MWC.Distributions as MWC
import qualified Numeric.Sum as Sum
import Statistics.Distribution.Poisson.Internal as Poisson
import qualified Statistics.Distribution as D
import Statistics.Internal
data GammaDistribution = GD {
GammaDistribution -> Double
gdShape :: {-# UNPACK #-} !Double
, GammaDistribution -> Double
gdScale :: {-# UNPACK #-} !Double
} deriving (GammaDistribution -> GammaDistribution -> Bool
(GammaDistribution -> GammaDistribution -> Bool)
-> (GammaDistribution -> GammaDistribution -> Bool)
-> Eq GammaDistribution
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: GammaDistribution -> GammaDistribution -> Bool
== :: GammaDistribution -> GammaDistribution -> Bool
$c/= :: GammaDistribution -> GammaDistribution -> Bool
/= :: GammaDistribution -> GammaDistribution -> Bool
Eq, Typeable, Typeable GammaDistribution
Typeable GammaDistribution =>
(forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> GammaDistribution
-> c GammaDistribution)
-> (forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c GammaDistribution)
-> (GammaDistribution -> Constr)
-> (GammaDistribution -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c GammaDistribution))
-> (forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c GammaDistribution))
-> ((forall b. Data b => b -> b)
-> GammaDistribution -> GammaDistribution)
-> (forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> GammaDistribution -> r)
-> (forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> GammaDistribution -> r)
-> (forall u.
(forall d. Data d => d -> u) -> GammaDistribution -> [u])
-> (forall u.
Int -> (forall d. Data d => d -> u) -> GammaDistribution -> u)
-> (forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> GammaDistribution -> m GammaDistribution)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> GammaDistribution -> m GammaDistribution)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> GammaDistribution -> m GammaDistribution)
-> Data GammaDistribution
GammaDistribution -> Constr
GammaDistribution -> DataType
(forall b. Data b => b -> b)
-> GammaDistribution -> GammaDistribution
forall a.
Typeable a =>
(forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u.
Int -> (forall d. Data d => d -> u) -> GammaDistribution -> u
forall u. (forall d. Data d => d -> u) -> GammaDistribution -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> GammaDistribution -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> GammaDistribution -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> GammaDistribution -> m GammaDistribution
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> GammaDistribution -> m GammaDistribution
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c GammaDistribution
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> GammaDistribution -> c GammaDistribution
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c GammaDistribution)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c GammaDistribution)
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> GammaDistribution -> c GammaDistribution
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> GammaDistribution -> c GammaDistribution
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c GammaDistribution
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c GammaDistribution
$ctoConstr :: GammaDistribution -> Constr
toConstr :: GammaDistribution -> Constr
$cdataTypeOf :: GammaDistribution -> DataType
dataTypeOf :: GammaDistribution -> DataType
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c GammaDistribution)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c GammaDistribution)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c GammaDistribution)
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c GammaDistribution)
$cgmapT :: (forall b. Data b => b -> b)
-> GammaDistribution -> GammaDistribution
gmapT :: (forall b. Data b => b -> b)
-> GammaDistribution -> GammaDistribution
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> GammaDistribution -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> GammaDistribution -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> GammaDistribution -> r
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> GammaDistribution -> r
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> GammaDistribution -> [u]
gmapQ :: forall u. (forall d. Data d => d -> u) -> GammaDistribution -> [u]
$cgmapQi :: forall u.
Int -> (forall d. Data d => d -> u) -> GammaDistribution -> u
gmapQi :: forall u.
Int -> (forall d. Data d => d -> u) -> GammaDistribution -> u
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> GammaDistribution -> m GammaDistribution
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> GammaDistribution -> m GammaDistribution
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> GammaDistribution -> m GammaDistribution
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> GammaDistribution -> m GammaDistribution
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> GammaDistribution -> m GammaDistribution
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> GammaDistribution -> m GammaDistribution
Data, (forall x. GammaDistribution -> Rep GammaDistribution x)
-> (forall x. Rep GammaDistribution x -> GammaDistribution)
-> Generic GammaDistribution
forall x. Rep GammaDistribution x -> GammaDistribution
forall x. GammaDistribution -> Rep GammaDistribution x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cfrom :: forall x. GammaDistribution -> Rep GammaDistribution x
from :: forall x. GammaDistribution -> Rep GammaDistribution x
$cto :: forall x. Rep GammaDistribution x -> GammaDistribution
to :: forall x. Rep GammaDistribution x -> GammaDistribution
Generic)
instance Show GammaDistribution where
showsPrec :: Int -> GammaDistribution -> ShowS
showsPrec Int
i (GD Double
k Double
theta) = [Char] -> Double -> Double -> Int -> ShowS
forall a b. (Show a, Show b) => [Char] -> a -> b -> Int -> ShowS
defaultShow2 [Char]
"improperGammaDistr" Double
k Double
theta Int
i
instance Read GammaDistribution where
readPrec :: ReadPrec GammaDistribution
readPrec = [Char]
-> (Double -> Double -> Maybe GammaDistribution)
-> ReadPrec GammaDistribution
forall a b r.
(Read a, Read b) =>
[Char] -> (a -> b -> Maybe r) -> ReadPrec r
defaultReadPrecM2 [Char]
"improperGammaDistr" Double -> Double -> Maybe GammaDistribution
improperGammaDistrE
instance ToJSON GammaDistribution
instance FromJSON GammaDistribution where
parseJSON :: Value -> Parser GammaDistribution
parseJSON (Object Object
v) = do
Double
k <- Object
v Object -> Key -> Parser Double
forall a. FromJSON a => Object -> Key -> Parser a
.: Key
"gdShape"
Double
theta <- Object
v Object -> Key -> Parser Double
forall a. FromJSON a => Object -> Key -> Parser a
.: Key
"gdScale"
Parser GammaDistribution
-> (GammaDistribution -> Parser GammaDistribution)
-> Maybe GammaDistribution
-> Parser GammaDistribution
forall b a. b -> (a -> b) -> Maybe a -> b
maybe ([Char] -> Parser GammaDistribution
forall a. [Char] -> Parser a
forall (m :: * -> *) a. MonadFail m => [Char] -> m a
fail ([Char] -> Parser GammaDistribution)
-> [Char] -> Parser GammaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> [Char]
errMsgI Double
k Double
theta) GammaDistribution -> Parser GammaDistribution
forall a. a -> Parser a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe GammaDistribution -> Parser GammaDistribution)
-> Maybe GammaDistribution -> Parser GammaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> Maybe GammaDistribution
improperGammaDistrE Double
k Double
theta
parseJSON Value
_ = Parser GammaDistribution
forall a. Parser a
forall (f :: * -> *) a. Alternative f => f a
empty
instance Binary GammaDistribution where
put :: GammaDistribution -> Put
put (GD Double
x Double
y) = Double -> Put
forall t. Binary t => t -> Put
put Double
x Put -> Put -> Put
forall a b. PutM a -> PutM b -> PutM b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Double -> Put
forall t. Binary t => t -> Put
put Double
y
get :: Get GammaDistribution
get = do
Double
k <- Get Double
forall t. Binary t => Get t
get
Double
theta <- Get Double
forall t. Binary t => Get t
get
Get GammaDistribution
-> (GammaDistribution -> Get GammaDistribution)
-> Maybe GammaDistribution
-> Get GammaDistribution
forall b a. b -> (a -> b) -> Maybe a -> b
maybe ([Char] -> Get GammaDistribution
forall a. [Char] -> Get a
forall (m :: * -> *) a. MonadFail m => [Char] -> m a
fail ([Char] -> Get GammaDistribution)
-> [Char] -> Get GammaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> [Char]
errMsgI Double
k Double
theta) GammaDistribution -> Get GammaDistribution
forall a. a -> Get a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe GammaDistribution -> Get GammaDistribution)
-> Maybe GammaDistribution -> Get GammaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> Maybe GammaDistribution
improperGammaDistrE Double
k Double
theta
gammaDistr :: Double
-> Double
-> GammaDistribution
gammaDistr :: Double -> Double -> GammaDistribution
gammaDistr Double
k Double
theta
= GammaDistribution
-> (GammaDistribution -> GammaDistribution)
-> Maybe GammaDistribution
-> GammaDistribution
forall b a. b -> (a -> b) -> Maybe a -> b
maybe ([Char] -> GammaDistribution
forall a. HasCallStack => [Char] -> a
error ([Char] -> GammaDistribution) -> [Char] -> GammaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> [Char]
errMsg Double
k Double
theta) GammaDistribution -> GammaDistribution
forall a. a -> a
id (Maybe GammaDistribution -> GammaDistribution)
-> Maybe GammaDistribution -> GammaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> Maybe GammaDistribution
gammaDistrE Double
k Double
theta
errMsg :: Double -> Double -> String
errMsg :: Double -> Double -> [Char]
errMsg Double
k Double
theta
= [Char]
"Statistics.Distribution.Gamma.gammaDistr: "
[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ [Char]
"k=" [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Double -> [Char]
forall a. Show a => a -> [Char]
show Double
k
[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ [Char]
"theta=" [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Double -> [Char]
forall a. Show a => a -> [Char]
show Double
theta
[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ [Char]
" but must be positive"
gammaDistrE :: Double
-> Double
-> Maybe GammaDistribution
gammaDistrE :: Double -> Double -> Maybe GammaDistribution
gammaDistrE Double
k Double
theta
| Double
k Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
> Double
0 Bool -> Bool -> Bool
&& Double
theta Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
> Double
0 = GammaDistribution -> Maybe GammaDistribution
forall a. a -> Maybe a
Just (Double -> Double -> GammaDistribution
GD Double
k Double
theta)
| Bool
otherwise = Maybe GammaDistribution
forall a. Maybe a
Nothing
improperGammaDistr :: Double
-> Double
-> GammaDistribution
improperGammaDistr :: Double -> Double -> GammaDistribution
improperGammaDistr Double
k Double
theta
= GammaDistribution
-> (GammaDistribution -> GammaDistribution)
-> Maybe GammaDistribution
-> GammaDistribution
forall b a. b -> (a -> b) -> Maybe a -> b
maybe ([Char] -> GammaDistribution
forall a. HasCallStack => [Char] -> a
error ([Char] -> GammaDistribution) -> [Char] -> GammaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> [Char]
errMsgI Double
k Double
theta) GammaDistribution -> GammaDistribution
forall a. a -> a
id (Maybe GammaDistribution -> GammaDistribution)
-> Maybe GammaDistribution -> GammaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> Maybe GammaDistribution
improperGammaDistrE Double
k Double
theta
errMsgI :: Double -> Double -> String
errMsgI :: Double -> Double -> [Char]
errMsgI Double
k Double
theta
= [Char]
"Statistics.Distribution.Gamma.gammaDistr: "
[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ [Char]
"k=" [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Double -> [Char]
forall a. Show a => a -> [Char]
show Double
k
[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ [Char]
"theta=" [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Double -> [Char]
forall a. Show a => a -> [Char]
show Double
theta
[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ [Char]
" but must be non-negative"
improperGammaDistrE :: Double
-> Double
-> Maybe GammaDistribution
improperGammaDistrE :: Double -> Double -> Maybe GammaDistribution
improperGammaDistrE Double
k Double
theta
| Double
k Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
>= Double
0 Bool -> Bool -> Bool
&& Double
theta Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
>= Double
0 = GammaDistribution -> Maybe GammaDistribution
forall a. a -> Maybe a
Just (Double -> Double -> GammaDistribution
GD Double
k Double
theta)
| Bool
otherwise = Maybe GammaDistribution
forall a. Maybe a
Nothing
instance D.Distribution GammaDistribution where
cumulative :: GammaDistribution -> Double -> Double
cumulative = GammaDistribution -> Double -> Double
cumulative
instance D.ContDistr GammaDistribution where
density :: GammaDistribution -> Double -> Double
density = GammaDistribution -> Double -> Double
density
logDensity :: GammaDistribution -> Double -> Double
logDensity (GD Double
k Double
theta) Double
x
| Double
x Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
<= Double
0 = Double
m_neg_inf
| Bool
otherwise = (KBNSum -> Double) -> [Double] -> Double
forall s (f :: * -> *).
(Summation s, Foldable f) =>
(s -> Double) -> f Double -> Double
forall (f :: * -> *).
Foldable f =>
(KBNSum -> Double) -> f Double -> Double
Sum.sum KBNSum -> Double
Sum.kbn [ Double -> Double
forall a. Floating a => a -> a
log Double
x Double -> Double -> Double
forall a. Num a => a -> a -> a
* (Double
k Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double
1)
, - (Double
x Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ Double
theta)
, - Double -> Double
logGamma Double
k
, - Double -> Double
forall a. Floating a => a -> a
log Double
theta Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double
k
]
quantile :: GammaDistribution -> Double -> Double
quantile = GammaDistribution -> Double -> Double
quantile
instance D.Variance GammaDistribution where
variance :: GammaDistribution -> Double
variance (GD Double
a Double
l) = Double
a Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double
l Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double
l
instance D.Mean GammaDistribution where
mean :: GammaDistribution -> Double
mean (GD Double
a Double
l) = Double
a Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double
l
instance D.MaybeMean GammaDistribution where
maybeMean :: GammaDistribution -> Maybe Double
maybeMean = Double -> Maybe Double
forall a. a -> Maybe a
Just (Double -> Maybe Double)
-> (GammaDistribution -> Double)
-> GammaDistribution
-> Maybe Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. GammaDistribution -> Double
forall d. Mean d => d -> Double
D.mean
instance D.MaybeVariance GammaDistribution where
maybeStdDev :: GammaDistribution -> Maybe Double
maybeStdDev = Double -> Maybe Double
forall a. a -> Maybe a
Just (Double -> Maybe Double)
-> (GammaDistribution -> Double)
-> GammaDistribution
-> Maybe Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. GammaDistribution -> Double
forall d. Variance d => d -> Double
D.stdDev
maybeVariance :: GammaDistribution -> Maybe Double
maybeVariance = Double -> Maybe Double
forall a. a -> Maybe a
Just (Double -> Maybe Double)
-> (GammaDistribution -> Double)
-> GammaDistribution
-> Maybe Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. GammaDistribution -> Double
forall d. Variance d => d -> Double
D.variance
instance D.MaybeEntropy GammaDistribution where
maybeEntropy :: GammaDistribution -> Maybe Double
maybeEntropy (GD Double
a Double
l)
| Double
a Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
> Double
0 Bool -> Bool -> Bool
&& Double
l Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
> Double
0 =
Double -> Maybe Double
forall a. a -> Maybe a
Just (Double -> Maybe Double) -> Double -> Maybe Double
forall a b. (a -> b) -> a -> b
$
Double
a
Double -> Double -> Double
forall a. Num a => a -> a -> a
+ Double -> Double
forall a. Floating a => a -> a
log Double
l
Double -> Double -> Double
forall a. Num a => a -> a -> a
+ Double -> Double
logGamma Double
a
Double -> Double -> Double
forall a. Num a => a -> a -> a
+ (Double
1Double -> Double -> Double
forall a. Num a => a -> a -> a
-Double
a) Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double -> Double
digamma Double
a
| Bool
otherwise = Maybe Double
forall a. Maybe a
Nothing
instance D.ContGen GammaDistribution where
genContVar :: forall g (m :: * -> *).
StatefulGen g m =>
GammaDistribution -> g -> m Double
genContVar (GD Double
a Double
l) = Double -> Double -> g -> m Double
forall g (m :: * -> *).
StatefulGen g m =>
Double -> Double -> g -> m Double
MWC.gamma Double
a Double
l
density :: GammaDistribution -> Double -> Double
density :: GammaDistribution -> Double -> Double
density (GD Double
a Double
l) Double
x
| Double
a Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
< Double
0 Bool -> Bool -> Bool
|| Double
l Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
<= Double
0 = Double
m_NaN
| Double
x Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
<= Double
0 = Double
0
| Double
a Double -> Double -> Bool
forall a. Eq a => a -> a -> Bool
== Double
0 = if Double
x Double -> Double -> Bool
forall a. Eq a => a -> a -> Bool
== Double
0 then Double
m_pos_inf else Double
0
| Double
x Double -> Double -> Bool
forall a. Eq a => a -> a -> Bool
== Double
0 = if Double
a Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
< Double
1 then Double
m_pos_inf else if Double
a Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
> Double
1 then Double
0 else Double
1Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/Double
l
| Double
a Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
< Double
1 = Double -> Double -> Double
Poisson.probability (Double
xDouble -> Double -> Double
forall a. Fractional a => a -> a -> a
/Double
l) Double
a Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double
a Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ Double
x
| Bool
otherwise = Double -> Double -> Double
Poisson.probability (Double
xDouble -> Double -> Double
forall a. Fractional a => a -> a -> a
/Double
l) (Double
aDouble -> Double -> Double
forall a. Num a => a -> a -> a
-Double
1) Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ Double
l
cumulative :: GammaDistribution -> Double -> Double
cumulative :: GammaDistribution -> Double -> Double
cumulative (GD Double
k Double
l) Double
x
| Double
x Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
<= Double
0 = Double
0
| Bool
otherwise = Double -> Double -> Double
incompleteGamma Double
k (Double
xDouble -> Double -> Double
forall a. Fractional a => a -> a -> a
/Double
l)
quantile :: GammaDistribution -> Double -> Double
quantile :: GammaDistribution -> Double -> Double
quantile (GD Double
k Double
l) Double
p
| Double
p Double -> Double -> Bool
forall a. Eq a => a -> a -> Bool
== Double
0 = Double
0
| Double
p Double -> Double -> Bool
forall a. Eq a => a -> a -> Bool
== Double
1 = Double
1Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/Double
0
| Double
p Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
> Double
0 Bool -> Bool -> Bool
&& Double
p Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
< Double
1 = Double
l Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double -> Double -> Double
invIncompleteGamma Double
k Double
p
| Bool
otherwise =
[Char] -> Double
forall a. HasCallStack => [Char] -> a
error ([Char] -> Double) -> [Char] -> Double
forall a b. (a -> b) -> a -> b
$ [Char]
"Statistics.Distribution.Gamma.quantile: p must be in [0,1] range. Got: "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++Double -> [Char]
forall a. Show a => a -> [Char]
show Double
p