base-prelude-1.6.1.1: Featureful preludes formed solely from the "base" package
Safe HaskellNone
LanguageHaskell2010

BasePrelude

Description

Reexports of most of the definitions from the "base" package, which it is a common practice to import unqualified.

For details check out the source.

Synopsis

Documentation

module Data.Bits

module Data.Bool

module Data.Char

module Data.Data

module Data.Fixed

module Data.IORef

module Data.Int

module Data.Ix

module Data.List

module Data.Maybe

module Data.Ord

module Data.Proxy

module Data.Ratio

module Data.STRef

module Data.Tuple

module Data.Void

module Data.Word

module Numeric

module System.IO

module System.Mem

class Category a => Arrow (a :: Type -> Type -> Type) where #

The basic arrow class.

Instances should satisfy the following laws:

where

assoc ((a,b),c) = (a,(b,c))

The other combinators have sensible default definitions, which may be overridden for efficiency.

Minimal complete definition

arr, (first | (***))

Methods

arr :: (b -> c) -> a b c #

Lift a function to an arrow.

(***) :: a b c -> a b' c' -> a (b, b') (c, c') infixr 3 #

Split the input between the two argument arrows and combine their output. Note that this is in general not a functor.

The default definition may be overridden with a more efficient version if desired.

(&&&) :: a b c -> a b c' -> a b (c, c') infixr 3 #

Fanout: send the input to both argument arrows and combine their output.

The default definition may be overridden with a more efficient version if desired.

Instances

Instances details
Monad m => Arrow (Kleisli m)

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

arr :: (b -> c) -> Kleisli m b c #

first :: Kleisli m b c -> Kleisli m (b, d) (c, d) #

second :: Kleisli m b c -> Kleisli m (d, b) (d, c) #

(***) :: Kleisli m b c -> Kleisli m b' c' -> Kleisli m (b, b') (c, c') #

(&&&) :: Kleisli m b c -> Kleisli m b c' -> Kleisli m b (c, c') #

Arrow (->)

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

arr :: (b -> c) -> b -> c #

first :: (b -> c) -> (b, d) -> (c, d) #

second :: (b -> c) -> (d, b) -> (d, c) #

(***) :: (b -> c) -> (b' -> c') -> (b, b') -> (c, c') #

(&&&) :: (b -> c) -> (b -> c') -> b -> (c, c') #

const :: a -> b -> a #

const x y always evaluates to x, ignoring its second argument.

const x = \_ -> x

This function might seem useless at first glance, but it can be very useful in a higher order context.

Examples

Expand
>>> const 42 "hello"
42
>>> map (const 42) [0..3]
[42,42,42,42]

closeFdWith #

Arguments

:: (Fd -> IO ())

Low-level action that performs the real close.

-> Fd

File descriptor to close.

-> IO () 

Close a file descriptor in a concurrency-safe way (GHC only). If you are using threadWaitRead or threadWaitWrite to perform blocking I/O, you must use this function to close file descriptors, or blocked threads may not be woken.

Any threads that are blocked on the file descriptor via threadWaitRead or threadWaitWrite will be unblocked by having IO exceptions thrown.

class Foldable (t :: Type -> Type) where #

The Foldable class represents data structures that can be reduced to a summary value one element at a time. Strict left-associative folds are a good fit for space-efficient reduction, while lazy right-associative folds are a good fit for corecursive iteration, or for folds that short-circuit after processing an initial subsequence of the structure's elements.

Instances can be derived automatically by enabling the DeriveFoldable extension. For example, a derived instance for a binary tree might be:

{-# LANGUAGE DeriveFoldable #-}
data Tree a = Empty
            | Leaf a
            | Node (Tree a) a (Tree a)
    deriving Foldable

A more detailed description can be found in the Overview section of Data.Foldable.

For the class laws see the Laws section of Data.Foldable.

Minimal complete definition

foldMap | foldr

Methods

fold :: Monoid m => t m -> m #

Given a structure with elements whose type is a Monoid, combine them via the monoid's (<>) operator. This fold is right-associative and lazy in the accumulator. When you need a strict left-associative fold, use foldMap' instead, with id as the map.

Examples

Expand

Basic usage:

>>> fold [[1, 2, 3], [4, 5], [6], []]
[1,2,3,4,5,6]
>>> fold $ Node (Leaf (Sum 1)) (Sum 3) (Leaf (Sum 5))
Sum {getSum = 9}

Folds of unbounded structures do not terminate when the monoid's (<>) operator is strict:

>>> fold (repeat Nothing)
* Hangs forever *

Lazy corecursive folds of unbounded structures are fine:

>>> take 12 $ fold $ map (\i -> [i..i+2]) [0..]
[0,1,2,1,2,3,2,3,4,3,4,5]
>>> sum $ take 4000000 $ fold $ map (\i -> [i..i+2]) [0..]
2666668666666

foldMap :: Monoid m => (a -> m) -> t a -> m #

Map each element of the structure into a monoid, and combine the results with (<>). This fold is right-associative and lazy in the accumulator. For strict left-associative folds consider foldMap' instead.

Examples

Expand

Basic usage:

>>> foldMap Sum [1, 3, 5]
Sum {getSum = 9}
>>> foldMap Product [1, 3, 5]
Product {getProduct = 15}
>>> foldMap (replicate 3) [1, 2, 3]
[1,1,1,2,2,2,3,3,3]

When a Monoid's (<>) is lazy in its second argument, foldMap can return a result even from an unbounded structure. For example, lazy accumulation enables Data.ByteString.Builder to efficiently serialise large data structures and produce the output incrementally:

>>> import qualified Data.ByteString.Lazy as L
>>> import qualified Data.ByteString.Builder as B
>>> let bld :: Int -> B.Builder; bld i = B.intDec i <> B.word8 0x20
>>> let lbs = B.toLazyByteString $ foldMap bld [0..]
>>> L.take 64 lbs
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24"

foldMap' :: Monoid m => (a -> m) -> t a -> m #

A left-associative variant of foldMap that is strict in the accumulator. Use this method for strict reduction when partial results are merged via (<>).

Examples

Expand

Define a Monoid over finite bit strings under xor. Use it to strictly compute the xor of a list of Int values.

>>> :set -XGeneralizedNewtypeDeriving
>>> import Data.Bits (Bits, FiniteBits, xor, zeroBits)
>>> import Data.Foldable (foldMap')
>>> import Numeric (showHex)
>>> 
>>> newtype X a = X a deriving (Eq, Bounded, Enum, Bits, FiniteBits)
>>> instance Bits a => Semigroup (X a) where X a <> X b = X (a `xor` b)
>>> instance Bits a => Monoid    (X a) where mempty     = X zeroBits
>>> 
>>> let bits :: [Int]; bits = [0xcafe, 0xfeed, 0xdeaf, 0xbeef, 0x5411]
>>> (\ (X a) -> showString "0x" . showHex a $ "") $ foldMap' X bits
"0x42"

Since: base-4.13.0.0

foldr' :: (a -> b -> b) -> b -> t a -> b #

foldr' is a variant of foldr that performs strict reduction from right to left, i.e. starting with the right-most element. The input structure must be finite, otherwise foldr' runs out of space (diverges).

If you want a strict right fold in constant space, you need a structure that supports faster than O(n) access to the right-most element, such as Seq from the containers package.

This method does not run in constant space for structures such as lists that don't support efficient right-to-left iteration and so require O(n) space to perform right-to-left reduction. Use of this method with such a structure is a hint that the chosen structure may be a poor fit for the task at hand. If the order in which the elements are combined is not important, use foldl' instead.

Since: base-4.6.0.0

Instances

Instances details
Foldable Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

fold :: Monoid m => Complex m -> m #

foldMap :: Monoid m => (a -> m) -> Complex a -> m #

foldMap' :: Monoid m => (a -> m) -> Complex a -> m #

foldr :: (a -> b -> b) -> b -> Complex a -> b #

foldr' :: (a -> b -> b) -> b -> Complex a -> b #

foldl :: (b -> a -> b) -> b -> Complex a -> b #

foldl' :: (b -> a -> b) -> b -> Complex a -> b #

foldr1 :: (a -> a -> a) -> Complex a -> a #

foldl1 :: (a -> a -> a) -> Complex a -> a #

toList :: Complex a -> [a] #

null :: Complex a -> Bool #

length :: Complex a -> Int #

elem :: Eq a => a -> Complex a -> Bool #

maximum :: Ord a => Complex a -> a #

minimum :: Ord a => Complex a -> a #

sum :: Num a => Complex a -> a #

product :: Num a => Complex a -> a #

Foldable First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => First m -> m #

foldMap :: Monoid m => (a -> m) -> First a -> m #

foldMap' :: Monoid m => (a -> m) -> First a -> m #

foldr :: (a -> b -> b) -> b -> First a -> b #

foldr' :: (a -> b -> b) -> b -> First a -> b #

foldl :: (b -> a -> b) -> b -> First a -> b #

foldl' :: (b -> a -> b) -> b -> First a -> b #

foldr1 :: (a -> a -> a) -> First a -> a #

foldl1 :: (a -> a -> a) -> First a -> a #

toList :: First a -> [a] #

null :: First a -> Bool #

length :: First a -> Int #

elem :: Eq a => a -> First a -> Bool #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

sum :: Num a => First a -> a #

product :: Num a => First a -> a #

Foldable Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Last m -> m #

foldMap :: Monoid m => (a -> m) -> Last a -> m #

foldMap' :: Monoid m => (a -> m) -> Last a -> m #

foldr :: (a -> b -> b) -> b -> Last a -> b #

foldr' :: (a -> b -> b) -> b -> Last a -> b #

foldl :: (b -> a -> b) -> b -> Last a -> b #

foldl' :: (b -> a -> b) -> b -> Last a -> b #

foldr1 :: (a -> a -> a) -> Last a -> a #

foldl1 :: (a -> a -> a) -> Last a -> a #

toList :: Last a -> [a] #

null :: Last a -> Bool #

length :: Last a -> Int #

elem :: Eq a => a -> Last a -> Bool #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

sum :: Num a => Last a -> a #

product :: Num a => Last a -> a #

Foldable Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Max m -> m #

foldMap :: Monoid m => (a -> m) -> Max a -> m #

foldMap' :: Monoid m => (a -> m) -> Max a -> m #

foldr :: (a -> b -> b) -> b -> Max a -> b #

foldr' :: (a -> b -> b) -> b -> Max a -> b #

foldl :: (b -> a -> b) -> b -> Max a -> b #

foldl' :: (b -> a -> b) -> b -> Max a -> b #

foldr1 :: (a -> a -> a) -> Max a -> a #

foldl1 :: (a -> a -> a) -> Max a -> a #

toList :: Max a -> [a] #

null :: Max a -> Bool #

length :: Max a -> Int #

elem :: Eq a => a -> Max a -> Bool #

maximum :: Ord a => Max a -> a #

minimum :: Ord a => Max a -> a #

sum :: Num a => Max a -> a #

product :: Num a => Max a -> a #

Foldable Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Min m -> m #

foldMap :: Monoid m => (a -> m) -> Min a -> m #

foldMap' :: Monoid m => (a -> m) -> Min a -> m #

foldr :: (a -> b -> b) -> b -> Min a -> b #

foldr' :: (a -> b -> b) -> b -> Min a -> b #

foldl :: (b -> a -> b) -> b -> Min a -> b #

foldl' :: (b -> a -> b) -> b -> Min a -> b #

foldr1 :: (a -> a -> a) -> Min a -> a #

foldl1 :: (a -> a -> a) -> Min a -> a #

toList :: Min a -> [a] #

null :: Min a -> Bool #

length :: Min a -> Int #

elem :: Eq a => a -> Min a -> Bool #

maximum :: Ord a => Min a -> a #

minimum :: Ord a => Min a -> a #

sum :: Num a => Min a -> a #

product :: Num a => Min a -> a #

Foldable NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => NonEmpty m -> m #

foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m #

foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m #

foldr :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldl :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldr1 :: (a -> a -> a) -> NonEmpty a -> a #

foldl1 :: (a -> a -> a) -> NonEmpty a -> a #

toList :: NonEmpty a -> [a] #

null :: NonEmpty a -> Bool #

length :: NonEmpty a -> Int #

elem :: Eq a => a -> NonEmpty a -> Bool #

maximum :: Ord a => NonEmpty a -> a #

minimum :: Ord a => NonEmpty a -> a #

sum :: Num a => NonEmpty a -> a #

product :: Num a => NonEmpty a -> a #

Foldable Identity

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Methods

fold :: Monoid m => Identity m -> m #

foldMap :: Monoid m => (a -> m) -> Identity a -> m #

foldMap' :: Monoid m => (a -> m) -> Identity a -> m #

foldr :: (a -> b -> b) -> b -> Identity a -> b #

foldr' :: (a -> b -> b) -> b -> Identity a -> b #

foldl :: (b -> a -> b) -> b -> Identity a -> b #

foldl' :: (b -> a -> b) -> b -> Identity a -> b #

foldr1 :: (a -> a -> a) -> Identity a -> a #

foldl1 :: (a -> a -> a) -> Identity a -> a #

toList :: Identity a -> [a] #

null :: Identity a -> Bool #

length :: Identity a -> Int #

elem :: Eq a => a -> Identity a -> Bool #

maximum :: Ord a => Identity a -> a #

minimum :: Ord a => Identity a -> a #

sum :: Num a => Identity a -> a #

product :: Num a => Identity a -> a #

Foldable First

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => First m -> m #

foldMap :: Monoid m => (a -> m) -> First a -> m #

foldMap' :: Monoid m => (a -> m) -> First a -> m #

foldr :: (a -> b -> b) -> b -> First a -> b #

foldr' :: (a -> b -> b) -> b -> First a -> b #

foldl :: (b -> a -> b) -> b -> First a -> b #

foldl' :: (b -> a -> b) -> b -> First a -> b #

foldr1 :: (a -> a -> a) -> First a -> a #

foldl1 :: (a -> a -> a) -> First a -> a #

toList :: First a -> [a] #

null :: First a -> Bool #

length :: First a -> Int #

elem :: Eq a => a -> First a -> Bool #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

sum :: Num a => First a -> a #

product :: Num a => First a -> a #

Foldable Last

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Last m -> m #

foldMap :: Monoid m => (a -> m) -> Last a -> m #

foldMap' :: Monoid m => (a -> m) -> Last a -> m #

foldr :: (a -> b -> b) -> b -> Last a -> b #

foldr' :: (a -> b -> b) -> b -> Last a -> b #

foldl :: (b -> a -> b) -> b -> Last a -> b #

foldl' :: (b -> a -> b) -> b -> Last a -> b #

foldr1 :: (a -> a -> a) -> Last a -> a #

foldl1 :: (a -> a -> a) -> Last a -> a #

toList :: Last a -> [a] #

null :: Last a -> Bool #

length :: Last a -> Int #

elem :: Eq a => a -> Last a -> Bool #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

sum :: Num a => Last a -> a #

product :: Num a => Last a -> a #

Foldable Down

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Down m -> m #

foldMap :: Monoid m => (a -> m) -> Down a -> m #

foldMap' :: Monoid m => (a -> m) -> Down a -> m #

foldr :: (a -> b -> b) -> b -> Down a -> b #

foldr' :: (a -> b -> b) -> b -> Down a -> b #

foldl :: (b -> a -> b) -> b -> Down a -> b #

foldl' :: (b -> a -> b) -> b -> Down a -> b #

foldr1 :: (a -> a -> a) -> Down a -> a #

foldl1 :: (a -> a -> a) -> Down a -> a #

toList :: Down a -> [a] #

null :: Down a -> Bool #

length :: Down a -> Int #

elem :: Eq a => a -> Down a -> Bool #

maximum :: Ord a => Down a -> a #

minimum :: Ord a => Down a -> a #

sum :: Num a => Down a -> a #

product :: Num a => Down a -> a #

Foldable Dual

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Dual m -> m #

foldMap :: Monoid m => (a -> m) -> Dual a -> m #

foldMap' :: Monoid m => (a -> m) -> Dual a -> m #

foldr :: (a -> b -> b) -> b -> Dual a -> b #

foldr' :: (a -> b -> b) -> b -> Dual a -> b #

foldl :: (b -> a -> b) -> b -> Dual a -> b #

foldl' :: (b -> a -> b) -> b -> Dual a -> b #

foldr1 :: (a -> a -> a) -> Dual a -> a #

foldl1 :: (a -> a -> a) -> Dual a -> a #

toList :: Dual a -> [a] #

null :: Dual a -> Bool #

length :: Dual a -> Int #

elem :: Eq a => a -> Dual a -> Bool #

maximum :: Ord a => Dual a -> a #

minimum :: Ord a => Dual a -> a #

sum :: Num a => Dual a -> a #

product :: Num a => Dual a -> a #

Foldable Product

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Product m -> m #

foldMap :: Monoid m => (a -> m) -> Product a -> m #

foldMap' :: Monoid m => (a -> m) -> Product a -> m #

foldr :: (a -> b -> b) -> b -> Product a -> b #

foldr' :: (a -> b -> b) -> b -> Product a -> b #

foldl :: (b -> a -> b) -> b -> Product a -> b #

foldl' :: (b -> a -> b) -> b -> Product a -> b #

foldr1 :: (a -> a -> a) -> Product a -> a #

foldl1 :: (a -> a -> a) -> Product a -> a #

toList :: Product a -> [a] #

null :: Product a -> Bool #

length :: Product a -> Int #

elem :: Eq a => a -> Product a -> Bool #

maximum :: Ord a => Product a -> a #

minimum :: Ord a => Product a -> a #

sum :: Num a => Product a -> a #

product :: Num a => Product a -> a #

Foldable Sum

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Sum m -> m #

foldMap :: Monoid m => (a -> m) -> Sum a -> m #

foldMap' :: Monoid m => (a -> m) -> Sum a -> m #

foldr :: (a -> b -> b) -> b -> Sum a -> b #

foldr' :: (a -> b -> b) -> b -> Sum a -> b #

foldl :: (b -> a -> b) -> b -> Sum a -> b #

foldl' :: (b -> a -> b) -> b -> Sum a -> b #

foldr1 :: (a -> a -> a) -> Sum a -> a #

foldl1 :: (a -> a -> a) -> Sum a -> a #

toList :: Sum a -> [a] #

null :: Sum a -> Bool #

length :: Sum a -> Int #

elem :: Eq a => a -> Sum a -> Bool #

maximum :: Ord a => Sum a -> a #

minimum :: Ord a => Sum a -> a #

sum :: Num a => Sum a -> a #

product :: Num a => Sum a -> a #

Foldable ZipList

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Functor.ZipList

Methods

fold :: Monoid m => ZipList m -> m #

foldMap :: Monoid m => (a -> m) -> ZipList a -> m #

foldMap' :: Monoid m => (a -> m) -> ZipList a -> m #

foldr :: (a -> b -> b) -> b -> ZipList a -> b #

foldr' :: (a -> b -> b) -> b -> ZipList a -> b #

foldl :: (b -> a -> b) -> b -> ZipList a -> b #

foldl' :: (b -> a -> b) -> b -> ZipList a -> b #

foldr1 :: (a -> a -> a) -> ZipList a -> a #

foldl1 :: (a -> a -> a) -> ZipList a -> a #

toList :: ZipList a -> [a] #

null :: ZipList a -> Bool #

length :: ZipList a -> Int #

elem :: Eq a => a -> ZipList a -> Bool #

maximum :: Ord a => ZipList a -> a #

minimum :: Ord a => ZipList a -> a #

sum :: Num a => ZipList a -> a #

product :: Num a => ZipList a -> a #

Foldable Par1

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Par1 m -> m #

foldMap :: Monoid m => (a -> m) -> Par1 a -> m #

foldMap' :: Monoid m => (a -> m) -> Par1 a -> m #

foldr :: (a -> b -> b) -> b -> Par1 a -> b #

foldr' :: (a -> b -> b) -> b -> Par1 a -> b #

foldl :: (b -> a -> b) -> b -> Par1 a -> b #

foldl' :: (b -> a -> b) -> b -> Par1 a -> b #

foldr1 :: (a -> a -> a) -> Par1 a -> a #

foldl1 :: (a -> a -> a) -> Par1 a -> a #

toList :: Par1 a -> [a] #

null :: Par1 a -> Bool #

length :: Par1 a -> Int #

elem :: Eq a => a -> Par1 a -> Bool #

maximum :: Ord a => Par1 a -> a #

minimum :: Ord a => Par1 a -> a #

sum :: Num a => Par1 a -> a #

product :: Num a => Par1 a -> a #

Foldable Maybe

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Maybe m -> m #

foldMap :: Monoid m => (a -> m) -> Maybe a -> m #

foldMap' :: Monoid m => (a -> m) -> Maybe a -> m #

foldr :: (a -> b -> b) -> b -> Maybe a -> b #

foldr' :: (a -> b -> b) -> b -> Maybe a -> b #

foldl :: (b -> a -> b) -> b -> Maybe a -> b #

foldl' :: (b -> a -> b) -> b -> Maybe a -> b #

foldr1 :: (a -> a -> a) -> Maybe a -> a #

foldl1 :: (a -> a -> a) -> Maybe a -> a #

toList :: Maybe a -> [a] #

null :: Maybe a -> Bool #

length :: Maybe a -> Int #

elem :: Eq a => a -> Maybe a -> Bool #

maximum :: Ord a => Maybe a -> a #

minimum :: Ord a => Maybe a -> a #

sum :: Num a => Maybe a -> a #

product :: Num a => Maybe a -> a #

Foldable Solo

Since: base-4.15

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Solo m -> m #

foldMap :: Monoid m => (a -> m) -> Solo a -> m #

foldMap' :: Monoid m => (a -> m) -> Solo a -> m #

foldr :: (a -> b -> b) -> b -> Solo a -> b #

foldr' :: (a -> b -> b) -> b -> Solo a -> b #

foldl :: (b -> a -> b) -> b -> Solo a -> b #

foldl' :: (b -> a -> b) -> b -> Solo a -> b #

foldr1 :: (a -> a -> a) -> Solo a -> a #

foldl1 :: (a -> a -> a) -> Solo a -> a #

toList :: Solo a -> [a] #

null :: Solo a -> Bool #

length :: Solo a -> Int #

elem :: Eq a => a -> Solo a -> Bool #

maximum :: Ord a => Solo a -> a #

minimum :: Ord a => Solo a -> a #

sum :: Num a => Solo a -> a #

product :: Num a => Solo a -> a #

Foldable []

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => [m] -> m #

foldMap :: Monoid m => (a -> m) -> [a] -> m #

foldMap' :: Monoid m => (a -> m) -> [a] -> m #

foldr :: (a -> b -> b) -> b -> [a] -> b #

foldr' :: (a -> b -> b) -> b -> [a] -> b #

foldl :: (b -> a -> b) -> b -> [a] -> b #

foldl' :: (b -> a -> b) -> b -> [a] -> b #

foldr1 :: (a -> a -> a) -> [a] -> a #

foldl1 :: (a -> a -> a) -> [a] -> a #

toList :: [a] -> [a] #

null :: [a] -> Bool #

length :: [a] -> Int #

elem :: Eq a => a -> [a] -> Bool #

maximum :: Ord a => [a] -> a #

minimum :: Ord a => [a] -> a #

sum :: Num a => [a] -> a #

product :: Num a => [a] -> a #

Foldable (Arg a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Arg a m -> m #

foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m #

foldMap' :: Monoid m => (a0 -> m) -> Arg a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 #

toList :: Arg a a0 -> [a0] #

null :: Arg a a0 -> Bool #

length :: Arg a a0 -> Int #

elem :: Eq a0 => a0 -> Arg a a0 -> Bool #

maximum :: Ord a0 => Arg a a0 -> a0 #

minimum :: Ord a0 => Arg a a0 -> a0 #

sum :: Num a0 => Arg a a0 -> a0 #

product :: Num a0 => Arg a a0 -> a0 #

Foldable (Array i)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Array i m -> m #

foldMap :: Monoid m => (a -> m) -> Array i a -> m #

foldMap' :: Monoid m => (a -> m) -> Array i a -> m #

foldr :: (a -> b -> b) -> b -> Array i a -> b #

foldr' :: (a -> b -> b) -> b -> Array i a -> b #

foldl :: (b -> a -> b) -> b -> Array i a -> b #

foldl' :: (b -> a -> b) -> b -> Array i a -> b #

foldr1 :: (a -> a -> a) -> Array i a -> a #

foldl1 :: (a -> a -> a) -> Array i a -> a #

toList :: Array i a -> [a] #

null :: Array i a -> Bool #

length :: Array i a -> Int #

elem :: Eq a => a -> Array i a -> Bool #

maximum :: Ord a => Array i a -> a #

minimum :: Ord a => Array i a -> a #

sum :: Num a => Array i a -> a #

product :: Num a => Array i a -> a #

Foldable (Either a)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Either a m -> m #

foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m #

foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 #

toList :: Either a a0 -> [a0] #

null :: Either a a0 -> Bool #

length :: Either a a0 -> Int #

elem :: Eq a0 => a0 -> Either a a0 -> Bool #

maximum :: Ord a0 => Either a a0 -> a0 #

minimum :: Ord a0 => Either a a0 -> a0 #

sum :: Num a0 => Either a a0 -> a0 #

product :: Num a0 => Either a a0 -> a0 #

Foldable (Proxy :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Proxy m -> m #

foldMap :: Monoid m => (a -> m) -> Proxy a -> m #

foldMap' :: Monoid m => (a -> m) -> Proxy a -> m #

foldr :: (a -> b -> b) -> b -> Proxy a -> b #

foldr' :: (a -> b -> b) -> b -> Proxy a -> b #

foldl :: (b -> a -> b) -> b -> Proxy a -> b #

foldl' :: (b -> a -> b) -> b -> Proxy a -> b #

foldr1 :: (a -> a -> a) -> Proxy a -> a #

foldl1 :: (a -> a -> a) -> Proxy a -> a #

toList :: Proxy a -> [a] #

null :: Proxy a -> Bool #

length :: Proxy a -> Int #

elem :: Eq a => a -> Proxy a -> Bool #

maximum :: Ord a => Proxy a -> a #

minimum :: Ord a => Proxy a -> a #

sum :: Num a => Proxy a -> a #

product :: Num a => Proxy a -> a #

Foldable (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => U1 m -> m #

foldMap :: Monoid m => (a -> m) -> U1 a -> m #

foldMap' :: Monoid m => (a -> m) -> U1 a -> m #

foldr :: (a -> b -> b) -> b -> U1 a -> b #

foldr' :: (a -> b -> b) -> b -> U1 a -> b #

foldl :: (b -> a -> b) -> b -> U1 a -> b #

foldl' :: (b -> a -> b) -> b -> U1 a -> b #

foldr1 :: (a -> a -> a) -> U1 a -> a #

foldl1 :: (a -> a -> a) -> U1 a -> a #

toList :: U1 a -> [a] #

null :: U1 a -> Bool #

length :: U1 a -> Int #

elem :: Eq a => a -> U1 a -> Bool #

maximum :: Ord a => U1 a -> a #

minimum :: Ord a => U1 a -> a #

sum :: Num a => U1 a -> a #

product :: Num a => U1 a -> a #

Foldable (UAddr :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UAddr m -> m #

foldMap :: Monoid m => (a -> m) -> UAddr a -> m #

foldMap' :: Monoid m => (a -> m) -> UAddr a -> m #

foldr :: (a -> b -> b) -> b -> UAddr a -> b #

foldr' :: (a -> b -> b) -> b -> UAddr a -> b #

foldl :: (b -> a -> b) -> b -> UAddr a -> b #

foldl' :: (b -> a -> b) -> b -> UAddr a -> b #

foldr1 :: (a -> a -> a) -> UAddr a -> a #

foldl1 :: (a -> a -> a) -> UAddr a -> a #

toList :: UAddr a -> [a] #

null :: UAddr a -> Bool #

length :: UAddr a -> Int #

elem :: Eq a => a -> UAddr a -> Bool #

maximum :: Ord a => UAddr a -> a #

minimum :: Ord a => UAddr a -> a #

sum :: Num a => UAddr a -> a #

product :: Num a => UAddr a -> a #

Foldable (UChar :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UChar m -> m #

foldMap :: Monoid m => (a -> m) -> UChar a -> m #

foldMap' :: Monoid m => (a -> m) -> UChar a -> m #

foldr :: (a -> b -> b) -> b -> UChar a -> b #

foldr' :: (a -> b -> b) -> b -> UChar a -> b #

foldl :: (b -> a -> b) -> b -> UChar a -> b #

foldl' :: (b -> a -> b) -> b -> UChar a -> b #

foldr1 :: (a -> a -> a) -> UChar a -> a #

foldl1 :: (a -> a -> a) -> UChar a -> a #

toList :: UChar a -> [a] #

null :: UChar a -> Bool #

length :: UChar a -> Int #

elem :: Eq a => a -> UChar a -> Bool #

maximum :: Ord a => UChar a -> a #

minimum :: Ord a => UChar a -> a #

sum :: Num a => UChar a -> a #

product :: Num a => UChar a -> a #

Foldable (UDouble :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UDouble m -> m #

foldMap :: Monoid m => (a -> m) -> UDouble a -> m #

foldMap' :: Monoid m => (a -> m) -> UDouble a -> m #

foldr :: (a -> b -> b) -> b -> UDouble a -> b #

foldr' :: (a -> b -> b) -> b -> UDouble a -> b #

foldl :: (b -> a -> b) -> b -> UDouble a -> b #

foldl' :: (b -> a -> b) -> b -> UDouble a -> b #

foldr1 :: (a -> a -> a) -> UDouble a -> a #

foldl1 :: (a -> a -> a) -> UDouble a -> a #

toList :: UDouble a -> [a] #

null :: UDouble a -> Bool #

length :: UDouble a -> Int #

elem :: Eq a => a -> UDouble a -> Bool #

maximum :: Ord a => UDouble a -> a #

minimum :: Ord a => UDouble a -> a #

sum :: Num a => UDouble a -> a #

product :: Num a => UDouble a -> a #

Foldable (UFloat :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UFloat m -> m #

foldMap :: Monoid m => (a -> m) -> UFloat a -> m #

foldMap' :: Monoid m => (a -> m) -> UFloat a -> m #

foldr :: (a -> b -> b) -> b -> UFloat a -> b #

foldr' :: (a -> b -> b) -> b -> UFloat a -> b #

foldl :: (b -> a -> b) -> b -> UFloat a -> b #

foldl' :: (b -> a -> b) -> b -> UFloat a -> b #

foldr1 :: (a -> a -> a) -> UFloat a -> a #

foldl1 :: (a -> a -> a) -> UFloat a -> a #

toList :: UFloat a -> [a] #

null :: UFloat a -> Bool #

length :: UFloat a -> Int #

elem :: Eq a => a -> UFloat a -> Bool #

maximum :: Ord a => UFloat a -> a #

minimum :: Ord a => UFloat a -> a #

sum :: Num a => UFloat a -> a #

product :: Num a => UFloat a -> a #

Foldable (UInt :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UInt m -> m #

foldMap :: Monoid m => (a -> m) -> UInt a -> m #

foldMap' :: Monoid m => (a -> m) -> UInt a -> m #

foldr :: (a -> b -> b) -> b -> UInt a -> b #

foldr' :: (a -> b -> b) -> b -> UInt a -> b #

foldl :: (b -> a -> b) -> b -> UInt a -> b #

foldl' :: (b -> a -> b) -> b -> UInt a -> b #

foldr1 :: (a -> a -> a) -> UInt a -> a #

foldl1 :: (a -> a -> a) -> UInt a -> a #

toList :: UInt a -> [a] #

null :: UInt a -> Bool #

length :: UInt a -> Int #

elem :: Eq a => a -> UInt a -> Bool #

maximum :: Ord a => UInt a -> a #

minimum :: Ord a => UInt a -> a #

sum :: Num a => UInt a -> a #

product :: Num a => UInt a -> a #

Foldable (UWord :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UWord m -> m #

foldMap :: Monoid m => (a -> m) -> UWord a -> m #

foldMap' :: Monoid m => (a -> m) -> UWord a -> m #

foldr :: (a -> b -> b) -> b -> UWord a -> b #

foldr' :: (a -> b -> b) -> b -> UWord a -> b #

foldl :: (b -> a -> b) -> b -> UWord a -> b #

foldl' :: (b -> a -> b) -> b -> UWord a -> b #

foldr1 :: (a -> a -> a) -> UWord a -> a #

foldl1 :: (a -> a -> a) -> UWord a -> a #

toList :: UWord a -> [a] #

null :: UWord a -> Bool #

length :: UWord a -> Int #

elem :: Eq a => a -> UWord a -> Bool #

maximum :: Ord a => UWord a -> a #

minimum :: Ord a => UWord a -> a #

sum :: Num a => UWord a -> a #

product :: Num a => UWord a -> a #

Foldable (V1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => V1 m -> m #

foldMap :: Monoid m => (a -> m) -> V1 a -> m #

foldMap' :: Monoid m => (a -> m) -> V1 a -> m #

foldr :: (a -> b -> b) -> b -> V1 a -> b #

foldr' :: (a -> b -> b) -> b -> V1 a -> b #

foldl :: (b -> a -> b) -> b -> V1 a -> b #

foldl' :: (b -> a -> b) -> b -> V1 a -> b #

foldr1 :: (a -> a -> a) -> V1 a -> a #

foldl1 :: (a -> a -> a) -> V1 a -> a #

toList :: V1 a -> [a] #

null :: V1 a -> Bool #

length :: V1 a -> Int #

elem :: Eq a => a -> V1 a -> Bool #

maximum :: Ord a => V1 a -> a #

minimum :: Ord a => V1 a -> a #

sum :: Num a => V1 a -> a #

product :: Num a => V1 a -> a #

Foldable ((,) a)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => (a, m) -> m #

foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m #

foldMap' :: Monoid m => (a0 -> m) -> (a, a0) -> m #

foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b #

foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b #

foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b #

foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b #

foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 #

toList :: (a, a0) -> [a0] #

null :: (a, a0) -> Bool #

length :: (a, a0) -> Int #

elem :: Eq a0 => a0 -> (a, a0) -> Bool #

maximum :: Ord a0 => (a, a0) -> a0 #

minimum :: Ord a0 => (a, a0) -> a0 #

sum :: Num a0 => (a, a0) -> a0 #

product :: Num a0 => (a, a0) -> a0 #

Foldable (Const m :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

fold :: Monoid m0 => Const m m0 -> m0 #

foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 #

foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 #

foldr :: (a -> b -> b) -> b -> Const m a -> b #

foldr' :: (a -> b -> b) -> b -> Const m a -> b #

foldl :: (b -> a -> b) -> b -> Const m a -> b #

foldl' :: (b -> a -> b) -> b -> Const m a -> b #

foldr1 :: (a -> a -> a) -> Const m a -> a #

foldl1 :: (a -> a -> a) -> Const m a -> a #

toList :: Const m a -> [a] #

null :: Const m a -> Bool #

length :: Const m a -> Int #

elem :: Eq a => a -> Const m a -> Bool #

maximum :: Ord a => Const m a -> a #

minimum :: Ord a => Const m a -> a #

sum :: Num a => Const m a -> a #

product :: Num a => Const m a -> a #

Foldable f => Foldable (Ap f)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Ap f m -> m #

foldMap :: Monoid m => (a -> m) -> Ap f a -> m #

foldMap' :: Monoid m => (a -> m) -> Ap f a -> m #

foldr :: (a -> b -> b) -> b -> Ap f a -> b #

foldr' :: (a -> b -> b) -> b -> Ap f a -> b #

foldl :: (b -> a -> b) -> b -> Ap f a -> b #

foldl' :: (b -> a -> b) -> b -> Ap f a -> b #

foldr1 :: (a -> a -> a) -> Ap f a -> a #

foldl1 :: (a -> a -> a) -> Ap f a -> a #

toList :: Ap f a -> [a] #

null :: Ap f a -> Bool #

length :: Ap f a -> Int #

elem :: Eq a => a -> Ap f a -> Bool #

maximum :: Ord a => Ap f a -> a #

minimum :: Ord a => Ap f a -> a #

sum :: Num a => Ap f a -> a #

product :: Num a => Ap f a -> a #

Foldable f => Foldable (Alt f)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Alt f m -> m #

foldMap :: Monoid m => (a -> m) -> Alt f a -> m #

foldMap' :: Monoid m => (a -> m) -> Alt f a -> m #

foldr :: (a -> b -> b) -> b -> Alt f a -> b #

foldr' :: (a -> b -> b) -> b -> Alt f a -> b #

foldl :: (b -> a -> b) -> b -> Alt f a -> b #

foldl' :: (b -> a -> b) -> b -> Alt f a -> b #

foldr1 :: (a -> a -> a) -> Alt f a -> a #

foldl1 :: (a -> a -> a) -> Alt f a -> a #

toList :: Alt f a -> [a] #

null :: Alt f a -> Bool #

length :: Alt f a -> Int #

elem :: Eq a => a -> Alt f a -> Bool #

maximum :: Ord a => Alt f a -> a #

minimum :: Ord a => Alt f a -> a #

sum :: Num a => Alt f a -> a #

product :: Num a => Alt f a -> a #

Foldable f => Foldable (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Rec1 f m -> m #

foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m #

foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m #

foldr :: (a -> b -> b) -> b -> Rec1 f a -> b #

foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b #

foldl :: (b -> a -> b) -> b -> Rec1 f a -> b #

foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b #

foldr1 :: (a -> a -> a) -> Rec1 f a -> a #

foldl1 :: (a -> a -> a) -> Rec1 f a -> a #

toList :: Rec1 f a -> [a] #

null :: Rec1 f a -> Bool #

length :: Rec1 f a -> Int #

elem :: Eq a => a -> Rec1 f a -> Bool #

maximum :: Ord a => Rec1 f a -> a #

minimum :: Ord a => Rec1 f a -> a #

sum :: Num a => Rec1 f a -> a #

product :: Num a => Rec1 f a -> a #

(Foldable f, Foldable g) => Foldable (Product f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

fold :: Monoid m => Product f g m -> m #

foldMap :: Monoid m => (a -> m) -> Product f g a -> m #

foldMap' :: Monoid m => (a -> m) -> Product f g a -> m #

foldr :: (a -> b -> b) -> b -> Product f g a -> b #

foldr' :: (a -> b -> b) -> b -> Product f g a -> b #

foldl :: (b -> a -> b) -> b -> Product f g a -> b #

foldl' :: (b -> a -> b) -> b -> Product f g a -> b #

foldr1 :: (a -> a -> a) -> Product f g a -> a #

foldl1 :: (a -> a -> a) -> Product f g a -> a #

toList :: Product f g a -> [a] #

null :: Product f g a -> Bool #

length :: Product f g a -> Int #

elem :: Eq a => a -> Product f g a -> Bool #

maximum :: Ord a => Product f g a -> a #

minimum :: Ord a => Product f g a -> a #

sum :: Num a => Product f g a -> a #

product :: Num a => Product f g a -> a #

(Foldable f, Foldable g) => Foldable (Sum f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

fold :: Monoid m => Sum f g m -> m #

foldMap :: Monoid m => (a -> m) -> Sum f g a -> m #

foldMap' :: Monoid m => (a -> m) -> Sum f g a -> m #

foldr :: (a -> b -> b) -> b -> Sum f g a -> b #

foldr' :: (a -> b -> b) -> b -> Sum f g a -> b #

foldl :: (b -> a -> b) -> b -> Sum f g a -> b #

foldl' :: (b -> a -> b) -> b -> Sum f g a -> b #

foldr1 :: (a -> a -> a) -> Sum f g a -> a #

foldl1 :: (a -> a -> a) -> Sum f g a -> a #

toList :: Sum f g a -> [a] #

null :: Sum f g a -> Bool #

length :: Sum f g a -> Int #

elem :: Eq a => a -> Sum f g a -> Bool #

maximum :: Ord a => Sum f g a -> a #

minimum :: Ord a => Sum f g a -> a #

sum :: Num a => Sum f g a -> a #

product :: Num a => Sum f g a -> a #

(Foldable f, Foldable g) => Foldable (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => (f :*: g) m -> m #

foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m #

foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m #

foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b #

foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b #

foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b #

foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b #

foldr1 :: (a -> a -> a) -> (f :*: g) a -> a #

foldl1 :: (a -> a -> a) -> (f :*: g) a -> a #

toList :: (f :*: g) a -> [a] #

null :: (f :*: g) a -> Bool #

length :: (f :*: g) a -> Int #

elem :: Eq a => a -> (f :*: g) a -> Bool #

maximum :: Ord a => (f :*: g) a -> a #

minimum :: Ord a => (f :*: g) a -> a #

sum :: Num a => (f :*: g) a -> a #

product :: Num a => (f :*: g) a -> a #

(Foldable f, Foldable g) => Foldable (f :+: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => (f :+: g) m -> m #

foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m #

foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m #

foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b #

foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b #

foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b #

foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b #

foldr1 :: (a -> a -> a) -> (f :+: g) a -> a #

foldl1 :: (a -> a -> a) -> (f :+: g) a -> a #

toList :: (f :+: g) a -> [a] #

null :: (f :+: g) a -> Bool #

length :: (f :+: g) a -> Int #

elem :: Eq a => a -> (f :+: g) a -> Bool #

maximum :: Ord a => (f :+: g) a -> a #

minimum :: Ord a => (f :+: g) a -> a #

sum :: Num a => (f :+: g) a -> a #

product :: Num a => (f :+: g) a -> a #

Foldable (K1 i c :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => K1 i c m -> m #

foldMap :: Monoid m => (a -> m) -> K1 i c a -> m #

foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m #

foldr :: (a -> b -> b) -> b -> K1 i c a -> b #

foldr' :: (a -> b -> b) -> b -> K1 i c a -> b #

foldl :: (b -> a -> b) -> b -> K1 i c a -> b #

foldl' :: (b -> a -> b) -> b -> K1 i c a -> b #

foldr1 :: (a -> a -> a) -> K1 i c a -> a #

foldl1 :: (a -> a -> a) -> K1 i c a -> a #

toList :: K1 i c a -> [a] #

null :: K1 i c a -> Bool #

length :: K1 i c a -> Int #

elem :: Eq a => a -> K1 i c a -> Bool #

maximum :: Ord a => K1 i c a -> a #

minimum :: Ord a => K1 i c a -> a #

sum :: Num a => K1 i c a -> a #

product :: Num a => K1 i c a -> a #

(Foldable f, Foldable g) => Foldable (Compose f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

fold :: Monoid m => Compose f g m -> m #

foldMap :: Monoid m => (a -> m) -> Compose f g a -> m #

foldMap' :: Monoid m => (a -> m) -> Compose f g a -> m #

foldr :: (a -> b -> b) -> b -> Compose f g a -> b #

foldr' :: (a -> b -> b) -> b -> Compose f g a -> b #

foldl :: (b -> a -> b) -> b -> Compose f g a -> b #

foldl' :: (b -> a -> b) -> b -> Compose f g a -> b #

foldr1 :: (a -> a -> a) -> Compose f g a -> a #

foldl1 :: (a -> a -> a) -> Compose f g a -> a #

toList :: Compose f g a -> [a] #

null :: Compose f g a -> Bool #

length :: Compose f g a -> Int #

elem :: Eq a => a -> Compose f g a -> Bool #

maximum :: Ord a => Compose f g a -> a #

minimum :: Ord a => Compose f g a -> a #

sum :: Num a => Compose f g a -> a #

product :: Num a => Compose f g a -> a #

(Foldable f, Foldable g) => Foldable (f :.: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => (f :.: g) m -> m #

foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m #

foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m #

foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b #

foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b #

foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b #

foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b #

foldr1 :: (a -> a -> a) -> (f :.: g) a -> a #

foldl1 :: (a -> a -> a) -> (f :.: g) a -> a #

toList :: (f :.: g) a -> [a] #

null :: (f :.: g) a -> Bool #

length :: (f :.: g) a -> Int #

elem :: Eq a => a -> (f :.: g) a -> Bool #

maximum :: Ord a => (f :.: g) a -> a #

minimum :: Ord a => (f :.: g) a -> a #

sum :: Num a => (f :.: g) a -> a #

product :: Num a => (f :.: g) a -> a #

Foldable f => Foldable (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => M1 i c f m -> m #

foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m #

foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m #

foldr :: (a -> b -> b) -> b -> M1 i c f a -> b #

foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b #

foldl :: (b -> a -> b) -> b -> M1 i c f a -> b #

foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b #

foldr1 :: (a -> a -> a) -> M1 i c f a -> a #

foldl1 :: (a -> a -> a) -> M1 i c f a -> a #

toList :: M1 i c f a -> [a] #

null :: M1 i c f a -> Bool #

length :: M1 i c f a -> Int #

elem :: Eq a => a -> M1 i c f a -> Bool #

maximum :: Ord a => M1 i c f a -> a #

minimum :: Ord a => M1 i c f a -> a #

sum :: Num a => M1 i c f a -> a #

product :: Num a => M1 i c f a -> a #

seq :: a -> b -> b infixr 0 #

The value of seq a b is bottom if a is bottom, and otherwise equal to b. In other words, it evaluates the first argument a to weak head normal form (WHNF). seq is usually introduced to improve performance by avoiding unneeded laziness.

A note on evaluation order: the expression seq a b does not guarantee that a will be evaluated before b. The only guarantee given by seq is that the both a and b will be evaluated before seq returns a value. In particular, this means that b may be evaluated before a. If you need to guarantee a specific order of evaluation, you must use the function pseq from the "parallel" package.

lazy :: a -> a #

The lazy function restrains strictness analysis a little. The call lazy e means the same as e, but lazy has a magical property so far as strictness analysis is concerned: it is lazy in its first argument, even though its semantics is strict. After strictness analysis has run, calls to lazy are inlined to be the identity function.

This behaviour is occasionally useful when controlling evaluation order. Notably, lazy is used in the library definition of par:

par :: a -> b -> b
par x y = case (par# x) of _ -> lazy y

If lazy were not lazy, par would look strict in y which would defeat the whole purpose of par.

inline :: a -> a #

The call inline f arranges that f is inlined, regardless of its size. More precisely, the call inline f rewrites to the right-hand side of f's definition. This allows the programmer to control inlining from a particular call site rather than the definition site of the function (c.f. INLINE pragmas).

This inlining occurs regardless of the argument to the call or the size of f's definition; it is unconditional. The main caveat is that f's definition must be visible to the compiler; it is therefore recommended to mark the function with an INLINABLE pragma at its definition so that GHC guarantees to record its unfolding regardless of size.

If no inlining takes place, the inline function expands to the identity function in Phase zero, so its use imposes no overhead.

($) :: (a -> b) -> a -> b infixr 0 #

($) is the function application operator.

Applying ($) to a function f and an argument x gives the same result as applying f to x directly. The definition is akin to this:

($) :: (a -> b) -> a -> b
($) f x = f x

This is id specialized from a -> a to (a -> b) -> (a -> b) which by the associativity of (->) is the same as (a -> b) -> a -> b.

On the face of it, this may appear pointless! But it's actually one of the most useful and important operators in Haskell.

The order of operations is very different between ($) and normal function application. Normal function application has precedence 10 - higher than any operator - and associates to the left. So these two definitions are equivalent:

expr = min 5 1 + 5
expr = ((min 5) 1) + 5

($) has precedence 0 (the lowest) and associates to the right, so these are equivalent:

expr = min 5 $ 1 + 5
expr = (min 5) (1 + 5)

Examples

Expand

A common use cases of ($) is to avoid parentheses in complex expressions.

For example, instead of using nested parentheses in the following Haskell function:

-- | Sum numbers in a string: strSum "100  5 -7" == 98
strSum :: String -> Int
strSum s = sum (mapMaybe readMaybe (words s))

we can deploy the function application operator:

-- | Sum numbers in a string: strSum "100  5 -7" == 98
strSum :: String -> Int
strSum s = sum $ mapMaybe readMaybe $ words s

($) is also used as a section (a partially applied operator), in order to indicate that we wish to apply some yet-unspecified function to a given value. For example, to apply the argument 5 to a list of functions:

applyFive :: [Int]
applyFive = map ($ 5) [(+1), (2^)]
>>> [6, 32]

Technical Remark (Representation Polymorphism)

Expand

($) is fully representation-polymorphic. This allows it to also be used with arguments of unlifted and even unboxed kinds, such as unboxed integers:

fastMod :: Int -> Int -> Int
fastMod (I# x) (I# m) = I# $ remInt# x m

class Num a where #

Basic numeric class.

The Haskell Report defines no laws for Num. However, (+) and (*) are customarily expected to define a ring and have the following properties:

Associativity of (+)
(x + y) + z = x + (y + z)
Commutativity of (+)
x + y = y + x
fromInteger 0 is the additive identity
x + fromInteger 0 = x
negate gives the additive inverse
x + negate x = fromInteger 0
Associativity of (*)
(x * y) * z = x * (y * z)
fromInteger 1 is the multiplicative identity
x * fromInteger 1 = x and fromInteger 1 * x = x
Distributivity of (*) with respect to (+)
a * (b + c) = (a * b) + (a * c) and (b + c) * a = (b * a) + (c * a)
Coherence with toInteger
if the type also implements Integral, then fromInteger is a left inverse for toInteger, i.e. fromInteger (toInteger i) == i

Note that it isn't customarily expected that a type instance of both Num and Ord implement an ordered ring. Indeed, in base only Integer and Rational do.

Minimal complete definition

(+), (*), abs, signum, fromInteger, (negate | (-))

Methods

(+) :: a -> a -> a infixl 6 #

(-) :: a -> a -> a infixl 6 #

(*) :: a -> a -> a infixl 7 #

negate :: a -> a #

Unary negation.

abs :: a -> a #

Absolute value.

signum :: a -> a #

Sign of a number. The functions abs and signum should satisfy the law:

abs x * signum x == x

For real numbers, the signum is either -1 (negative), 0 (zero) or 1 (positive).

fromInteger :: Integer -> a #

Conversion from an Integer. An integer literal represents the application of the function fromInteger to the appropriate value of type Integer, so such literals have type (Num a) => a.

Instances

Instances details
Num IntPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Num WordPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Num Int16

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Num Int32

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Num Int64

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Num Int8

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Methods

(+) :: Int8 -> Int8 -> Int8 #

(-) :: Int8 -> Int8 -> Int8 #

(*) :: Int8 -> Int8 -> Int8 #

negate :: Int8 -> Int8 #

abs :: Int8 -> Int8 #

signum :: Int8 -> Int8 #

fromInteger :: Integer -> Int8 #

Num CBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Num CBlkSize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Num CCc 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(+) :: CCc -> CCc -> CCc #

(-) :: CCc -> CCc -> CCc #

(*) :: CCc -> CCc -> CCc #

negate :: CCc -> CCc #

abs :: CCc -> CCc #

signum :: CCc -> CCc #

fromInteger :: Integer -> CCc #

Num CClockId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Num CDev 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(+) :: CDev -> CDev -> CDev #

(-) :: CDev -> CDev -> CDev #

(*) :: CDev -> CDev -> CDev #

negate :: CDev -> CDev #

abs :: CDev -> CDev #

signum :: CDev -> CDev #

fromInteger :: Integer -> CDev #

Num CFsBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Num CFsFilCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Num CGid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(+) :: CGid -> CGid -> CGid #

(-) :: CGid -> CGid -> CGid #

(*) :: CGid -> CGid -> CGid #

negate :: CGid -> CGid #

abs :: CGid -> CGid #

signum :: CGid -> CGid #

fromInteger :: Integer -> CGid #

Num CId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(+) :: CId -> CId -> CId #

(-) :: CId -> CId -> CId #

(*) :: CId -> CId -> CId #

negate :: CId -> CId #

abs :: CId -> CId #

signum :: CId -> CId #

fromInteger :: Integer -> CId #

Num CIno 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(+) :: CIno -> CIno -> CIno #

(-) :: CIno -> CIno -> CIno #

(*) :: CIno -> CIno -> CIno #

negate :: CIno -> CIno #

abs :: CIno -> CIno #

signum :: CIno -> CIno #

fromInteger :: Integer -> CIno #

Num CKey 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(+) :: CKey -> CKey -> CKey #

(-) :: CKey -> CKey -> CKey #

(*) :: CKey -> CKey -> CKey #

negate :: CKey -> CKey #

abs :: CKey -> CKey #

signum :: CKey -> CKey #

fromInteger :: Integer -> CKey #

Num CMode 
Instance details

Defined in GHC.Internal.System.Posix.Types

Num CNfds 
Instance details

Defined in GHC.Internal.System.Posix.Types

Num CNlink 
Instance details

Defined in GHC.Internal.System.Posix.Types

Num COff 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(+) :: COff -> COff -> COff #

(-) :: COff -> COff -> COff #

(*) :: COff -> COff -> COff #

negate :: COff -> COff #

abs :: COff -> COff #

signum :: COff -> COff #

fromInteger :: Integer -> COff #

Num CPid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(+) :: CPid -> CPid -> CPid #

(-) :: CPid -> CPid -> CPid #

(*) :: CPid -> CPid -> CPid #

negate :: CPid -> CPid #

abs :: CPid -> CPid #

signum :: CPid -> CPid #

fromInteger :: Integer -> CPid #

Num CRLim 
Instance details

Defined in GHC.Internal.System.Posix.Types

Num CSocklen 
Instance details

Defined in GHC.Internal.System.Posix.Types

Num CSpeed 
Instance details

Defined in GHC.Internal.System.Posix.Types

Num CSsize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Num CTcflag 
Instance details

Defined in GHC.Internal.System.Posix.Types

Num CUid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(+) :: CUid -> CUid -> CUid #

(-) :: CUid -> CUid -> CUid #

(*) :: CUid -> CUid -> CUid #

negate :: CUid -> CUid #

abs :: CUid -> CUid #

signum :: CUid -> CUid #

fromInteger :: Integer -> CUid #

Num Fd 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(+) :: Fd -> Fd -> Fd #

(-) :: Fd -> Fd -> Fd #

(*) :: Fd -> Fd -> Fd #

negate :: Fd -> Fd #

abs :: Fd -> Fd #

signum :: Fd -> Fd #

fromInteger :: Integer -> Fd #

Num Word16

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Num Word32

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Num Word64

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Num Word8

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Num Integer

Since: base-2.1

Instance details

Defined in GHC.Internal.Num

Num Natural

Note that Natural's Num instance isn't a ring: no element but 0 has an additive inverse. It is a semiring though.

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Num

Num Double

This instance implements IEEE 754 standard with all its usual pitfalls about NaN, infinities and negative zero. Neither addition nor multiplication are associative or distributive:

>>> (0.1 + 0.1) + 0.4 == 0.1 + (0.1 + 0.4)
False
>>> (0.1 + 0.2) * 0.3 == 0.1 * 0.3 + 0.2 * 0.3
False
>>> (0.1 * 0.1) * 0.3 == 0.1 * (0.1 * 0.3)
False

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Num Float

This instance implements IEEE 754 standard with all its usual pitfalls about NaN, infinities and negative zero. Neither addition nor multiplication are associative or distributive:

>>> (0.1 + 0.1 :: Float) + 0.5 == 0.1 + (0.1 + 0.5)
False
>>> (0.1 + 0.2 :: Float) * 0.9 == 0.1 * 0.9 + 0.2 * 0.9
False
>>> (0.1 * 0.1 :: Float) * 0.9 == 0.1 * (0.1 * 0.9)
False

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Num Int

Since: base-2.1

Instance details

Defined in GHC.Internal.Num

Methods

(+) :: Int -> Int -> Int #

(-) :: Int -> Int -> Int #

(*) :: Int -> Int -> Int #

negate :: Int -> Int #

abs :: Int -> Int #

signum :: Int -> Int #

fromInteger :: Integer -> Int #

Num Word

Since: base-2.1

Instance details

Defined in GHC.Internal.Num

Methods

(+) :: Word -> Word -> Word #

(-) :: Word -> Word -> Word #

(*) :: Word -> Word -> Word #

negate :: Word -> Word #

abs :: Word -> Word #

signum :: Word -> Word #

fromInteger :: Integer -> Word #

RealFloat a => Num (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

(+) :: Complex a -> Complex a -> Complex a #

(-) :: Complex a -> Complex a -> Complex a #

(*) :: Complex a -> Complex a -> Complex a #

negate :: Complex a -> Complex a #

abs :: Complex a -> Complex a #

signum :: Complex a -> Complex a #

fromInteger :: Integer -> Complex a #

Num a => Num (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(+) :: Max a -> Max a -> Max a #

(-) :: Max a -> Max a -> Max a #

(*) :: Max a -> Max a -> Max a #

negate :: Max a -> Max a #

abs :: Max a -> Max a #

signum :: Max a -> Max a #

fromInteger :: Integer -> Max a #

Num a => Num (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(+) :: Min a -> Min a -> Min a #

(-) :: Min a -> Min a -> Min a #

(*) :: Min a -> Min a -> Min a #

negate :: Min a -> Min a #

abs :: Min a -> Min a #

signum :: Min a -> Min a #

fromInteger :: Integer -> Min a #

Num a => Num (Identity a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Num a => Num (Down a)

Since: base-4.11.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

(+) :: Down a -> Down a -> Down a #

(-) :: Down a -> Down a -> Down a #

(*) :: Down a -> Down a -> Down a #

negate :: Down a -> Down a #

abs :: Down a -> Down a #

signum :: Down a -> Down a #

fromInteger :: Integer -> Down a #

Num a => Num (Product a)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(+) :: Product a -> Product a -> Product a #

(-) :: Product a -> Product a -> Product a #

(*) :: Product a -> Product a -> Product a #

negate :: Product a -> Product a #

abs :: Product a -> Product a #

signum :: Product a -> Product a #

fromInteger :: Integer -> Product a #

Num a => Num (Sum a)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(+) :: Sum a -> Sum a -> Sum a #

(-) :: Sum a -> Sum a -> Sum a #

(*) :: Sum a -> Sum a -> Sum a #

negate :: Sum a -> Sum a #

abs :: Sum a -> Sum a #

signum :: Sum a -> Sum a #

fromInteger :: Integer -> Sum a #

Integral a => Num (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

(+) :: Ratio a -> Ratio a -> Ratio a #

(-) :: Ratio a -> Ratio a -> Ratio a #

(*) :: Ratio a -> Ratio a -> Ratio a #

negate :: Ratio a -> Ratio a #

abs :: Ratio a -> Ratio a #

signum :: Ratio a -> Ratio a #

fromInteger :: Integer -> Ratio a #

HasResolution a => Num (Fixed a)

Multiplication is not associative or distributive:

>>> (0.2 * 0.6 :: Deci) * 0.9 == 0.2 * (0.6 * 0.9)
False
>>> (0.1 + 0.1 :: Deci) * 0.5 == 0.1 * 0.5 + 0.1 * 0.5
False

Since: base-2.1

Instance details

Defined in Data.Fixed

Methods

(+) :: Fixed a -> Fixed a -> Fixed a #

(-) :: Fixed a -> Fixed a -> Fixed a #

(*) :: Fixed a -> Fixed a -> Fixed a #

negate :: Fixed a -> Fixed a #

abs :: Fixed a -> Fixed a #

signum :: Fixed a -> Fixed a #

fromInteger :: Integer -> Fixed a #

Num a => Num (Op a b) 
Instance details

Defined in Data.Functor.Contravariant

Methods

(+) :: Op a b -> Op a b -> Op a b #

(-) :: Op a b -> Op a b -> Op a b #

(*) :: Op a b -> Op a b -> Op a b #

negate :: Op a b -> Op a b #

abs :: Op a b -> Op a b #

signum :: Op a b -> Op a b #

fromInteger :: Integer -> Op a b #

Num a => Num (Const a b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

(+) :: Const a b -> Const a b -> Const a b #

(-) :: Const a b -> Const a b -> Const a b #

(*) :: Const a b -> Const a b -> Const a b #

negate :: Const a b -> Const a b #

abs :: Const a b -> Const a b #

signum :: Const a b -> Const a b #

fromInteger :: Integer -> Const a b #

(Applicative f, Num a) => Num (Ap f a)

Note that even if the underlying Num and Applicative instances are lawful, for most Applicatives, this instance will not be lawful. If you use this instance with the list Applicative, the following customary laws will not hold:

Commutativity:

>>> Ap [10,20] + Ap [1,2]
Ap {getAp = [11,12,21,22]}
>>> Ap [1,2] + Ap [10,20]
Ap {getAp = [11,21,12,22]}

Additive inverse:

>>> Ap [] + negate (Ap [])
Ap {getAp = []}
>>> fromInteger 0 :: Ap [] Int
Ap {getAp = [0]}

Distributivity:

>>> Ap [1,2] * (3 + 4)
Ap {getAp = [7,14]}
>>> (Ap [1,2] * 3) + (Ap [1,2] * 4)
Ap {getAp = [7,11,10,14]}

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(+) :: Ap f a -> Ap f a -> Ap f a #

(-) :: Ap f a -> Ap f a -> Ap f a #

(*) :: Ap f a -> Ap f a -> Ap f a #

negate :: Ap f a -> Ap f a #

abs :: Ap f a -> Ap f a #

signum :: Ap f a -> Ap f a #

fromInteger :: Integer -> Ap f a #

Num (f a) => Num (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(+) :: Alt f a -> Alt f a -> Alt f a #

(-) :: Alt f a -> Alt f a -> Alt f a #

(*) :: Alt f a -> Alt f a -> Alt f a #

negate :: Alt f a -> Alt f a #

abs :: Alt f a -> Alt f a #

signum :: Alt f a -> Alt f a #

fromInteger :: Integer -> Alt f a #

Num (f (g a)) => Num (Compose f g a)

Since: base-4.19.0.0

Instance details

Defined in Data.Functor.Compose

Methods

(+) :: Compose f g a -> Compose f g a -> Compose f g a #

(-) :: Compose f g a -> Compose f g a -> Compose f g a #

(*) :: Compose f g a -> Compose f g a -> Compose f g a #

negate :: Compose f g a -> Compose f g a #

abs :: Compose f g a -> Compose f g a #

signum :: Compose f g a -> Compose f g a #

fromInteger :: Integer -> Compose f g a #

class Num a => Fractional a where #

Fractional numbers, supporting real division.

The Haskell Report defines no laws for Fractional. However, (+) and (*) are customarily expected to define a division ring and have the following properties:

recip gives the multiplicative inverse
x * recip x = recip x * x = fromInteger 1
Totality of toRational
toRational is total
Coherence with toRational
if the type also implements Real, then fromRational is a left inverse for toRational, i.e. fromRational (toRational i) = i

Note that it isn't customarily expected that a type instance of Fractional implement a field. However, all instances in base do.

Minimal complete definition

fromRational, (recip | (/))

Methods

(/) :: a -> a -> a infixl 7 #

Fractional division.

recip :: a -> a #

Reciprocal fraction.

fromRational :: Rational -> a #

Conversion from a Rational (that is Ratio Integer). A floating literal stands for an application of fromRational to a value of type Rational, so such literals have type (Fractional a) => a.

Instances

Instances details
Fractional Double

This instance implements IEEE 754 standard with all its usual pitfalls about NaN, infinities and negative zero.

>>> 0 == (-0 :: Double)
True
>>> recip 0 == recip (-0 :: Double)
False
>>> map (/ 0) [-1, 0, 1]
[-Infinity,NaN,Infinity]
>>> map (* 0) $ map (/ 0) [-1, 0, 1]
[NaN,NaN,NaN]

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Fractional Float

This instance implements IEEE 754 standard with all its usual pitfalls about NaN, infinities and negative zero.

>>> 0 == (-0 :: Float)
True
>>> recip 0 == recip (-0 :: Float)
False
>>> map (/ 0) [-1, 0, 1 :: Float]
[-Infinity,NaN,Infinity]
>>> map (* 0) $ map (/ 0) [-1, 0, 1 :: Float]
[NaN,NaN,NaN]

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

RealFloat a => Fractional (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

(/) :: Complex a -> Complex a -> Complex a #

recip :: Complex a -> Complex a #

fromRational :: Rational -> Complex a #

Fractional a => Fractional (Identity a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Fractional a => Fractional (Down a)

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

(/) :: Down a -> Down a -> Down a #

recip :: Down a -> Down a #

fromRational :: Rational -> Down a #

Integral a => Fractional (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

(/) :: Ratio a -> Ratio a -> Ratio a #

recip :: Ratio a -> Ratio a #

fromRational :: Rational -> Ratio a #

HasResolution a => Fractional (Fixed a)

Since: base-2.1

Instance details

Defined in Data.Fixed

Methods

(/) :: Fixed a -> Fixed a -> Fixed a #

recip :: Fixed a -> Fixed a #

fromRational :: Rational -> Fixed a #

Fractional a => Fractional (Op a b) 
Instance details

Defined in Data.Functor.Contravariant

Methods

(/) :: Op a b -> Op a b -> Op a b #

recip :: Op a b -> Op a b #

fromRational :: Rational -> Op a b #

Fractional a => Fractional (Const a b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

(/) :: Const a b -> Const a b -> Const a b #

recip :: Const a b -> Const a b #

fromRational :: Rational -> Const a b #

Fractional (f (g a)) => Fractional (Compose f g a)

Since: base-4.20.0.0

Instance details

Defined in Data.Functor.Compose

Methods

(/) :: Compose f g a -> Compose f g a -> Compose f g a #

recip :: Compose f g a -> Compose f g a #

fromRational :: Rational -> Compose f g a #

class Enum a where #

Class Enum defines operations on sequentially ordered types.

The enumFrom... methods are used in Haskell's translation of arithmetic sequences.

Instances of Enum may be derived for any enumeration type (types whose constructors have no fields). The nullary constructors are assumed to be numbered left-to-right by fromEnum from 0 through n-1. See Chapter 10 of the Haskell Report for more details.

For any type that is an instance of class Bounded as well as Enum, the following should hold:

   enumFrom     x   = enumFromTo     x maxBound
   enumFromThen x y = enumFromThenTo x y bound
     where
       bound | fromEnum y >= fromEnum x = maxBound
             | otherwise                = minBound

Minimal complete definition

toEnum, fromEnum

Methods

succ :: a -> a #

Successor of a value. For numeric types, succ adds 1.

pred :: a -> a #

Predecessor of a value. For numeric types, pred subtracts 1.

toEnum :: Int -> a #

Convert from an Int.

fromEnum :: a -> Int #

Convert to an Int. It is implementation-dependent what fromEnum returns when applied to a value that is too large to fit in an Int.

enumFrom :: a -> [a] #

Used in Haskell's translation of [n..] with [n..] = enumFrom n, a possible implementation being enumFrom n = n : enumFrom (succ n).

Examples

Expand
  • enumFrom 4 :: [Integer] = [4,5,6,7,...]
  • enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: Int]

enumFromThen :: a -> a -> [a] #

Used in Haskell's translation of [n,n'..] with [n,n'..] = enumFromThen n n', a possible implementation being enumFromThen n n' = n : n' : worker (f x) (f x n'), worker s v = v : worker s (s v), x = fromEnum n' - fromEnum n and

  f n y
    | n > 0 = f (n - 1) (succ y)
    | n < 0 = f (n + 1) (pred y)
    | otherwise = y
  

Examples

Expand
  • enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
  • enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: Int]

enumFromTo :: a -> a -> [a] #

Used in Haskell's translation of [n..m] with [n..m] = enumFromTo n m, a possible implementation being

  enumFromTo n m
     | n <= m = n : enumFromTo (succ n) m
     | otherwise = []
  

Examples

Expand
  • enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
  • enumFromTo 42 1 :: [Integer] = []

enumFromThenTo :: a -> a -> a -> [a] #

Used in Haskell's translation of [n,n'..m] with [n,n'..m] = enumFromThenTo n n' m, a possible implementation being enumFromThenTo n n' m = worker (f x) (c x) n m, x = fromEnum n' - fromEnum n, c x = bool (>=) ((x 0)

  f n y
     | n > 0 = f (n - 1) (succ y)
     | n < 0 = f (n + 1) (pred y)
     | otherwise = y
  

and

  worker s c v m
     | c v m = v : worker s c (s v) m
     | otherwise = []
  

Examples

Expand
  • enumFromThenTo 4 2 -6 :: [Integer] = [4,2,0,-2,-4,-6]
  • enumFromThenTo 6 8 2 :: [Int] = []

Instances

Instances details
Enum IntPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Enum WordPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Enum Associativity

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Enum DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Enum SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Enum SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Enum SeekMode

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.Device

Enum IOMode

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.IOMode

Enum Int16

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Enum Int32

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Enum Int64

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Enum Int8

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Methods

succ :: Int8 -> Int8 #

pred :: Int8 -> Int8 #

toEnum :: Int -> Int8 #

fromEnum :: Int8 -> Int #

enumFrom :: Int8 -> [Int8] #

enumFromThen :: Int8 -> Int8 -> [Int8] #

enumFromTo :: Int8 -> Int8 -> [Int8] #

enumFromThenTo :: Int8 -> Int8 -> Int8 -> [Int8] #

Enum CBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Enum CBlkSize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Enum CCc 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

succ :: CCc -> CCc #

pred :: CCc -> CCc #

toEnum :: Int -> CCc #

fromEnum :: CCc -> Int #

enumFrom :: CCc -> [CCc] #

enumFromThen :: CCc -> CCc -> [CCc] #

enumFromTo :: CCc -> CCc -> [CCc] #

enumFromThenTo :: CCc -> CCc -> CCc -> [CCc] #

Enum CClockId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Enum CDev 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

succ :: CDev -> CDev #

pred :: CDev -> CDev #

toEnum :: Int -> CDev #

fromEnum :: CDev -> Int #

enumFrom :: CDev -> [CDev] #

enumFromThen :: CDev -> CDev -> [CDev] #

enumFromTo :: CDev -> CDev -> [CDev] #

enumFromThenTo :: CDev -> CDev -> CDev -> [CDev] #

Enum CFsBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Enum CFsFilCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Enum CGid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

succ :: CGid -> CGid #

pred :: CGid -> CGid #

toEnum :: Int -> CGid #

fromEnum :: CGid -> Int #

enumFrom :: CGid -> [CGid] #

enumFromThen :: CGid -> CGid -> [CGid] #

enumFromTo :: CGid -> CGid -> [CGid] #

enumFromThenTo :: CGid -> CGid -> CGid -> [CGid] #

Enum CId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

succ :: CId -> CId #

pred :: CId -> CId #

toEnum :: Int -> CId #

fromEnum :: CId -> Int #

enumFrom :: CId -> [CId] #

enumFromThen :: CId -> CId -> [CId] #

enumFromTo :: CId -> CId -> [CId] #

enumFromThenTo :: CId -> CId -> CId -> [CId] #

Enum CIno 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

succ :: CIno -> CIno #

pred :: CIno -> CIno #

toEnum :: Int -> CIno #

fromEnum :: CIno -> Int #

enumFrom :: CIno -> [CIno] #

enumFromThen :: CIno -> CIno -> [CIno] #

enumFromTo :: CIno -> CIno -> [CIno] #

enumFromThenTo :: CIno -> CIno -> CIno -> [CIno] #

Enum CKey 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

succ :: CKey -> CKey #

pred :: CKey -> CKey #

toEnum :: Int -> CKey #

fromEnum :: CKey -> Int #

enumFrom :: CKey -> [CKey] #

enumFromThen :: CKey -> CKey -> [CKey] #

enumFromTo :: CKey -> CKey -> [CKey] #

enumFromThenTo :: CKey -> CKey -> CKey -> [CKey] #

Enum CMode 
Instance details

Defined in GHC.Internal.System.Posix.Types

Enum CNfds 
Instance details

Defined in GHC.Internal.System.Posix.Types

Enum CNlink 
Instance details

Defined in GHC.Internal.System.Posix.Types

Enum COff 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

succ :: COff -> COff #

pred :: COff -> COff #

toEnum :: Int -> COff #

fromEnum :: COff -> Int #

enumFrom :: COff -> [COff] #

enumFromThen :: COff -> COff -> [COff] #

enumFromTo :: COff -> COff -> [COff] #

enumFromThenTo :: COff -> COff -> COff -> [COff] #

Enum CPid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

succ :: CPid -> CPid #

pred :: CPid -> CPid #

toEnum :: Int -> CPid #

fromEnum :: CPid -> Int #

enumFrom :: CPid -> [CPid] #

enumFromThen :: CPid -> CPid -> [CPid] #

enumFromTo :: CPid -> CPid -> [CPid] #

enumFromThenTo :: CPid -> CPid -> CPid -> [CPid] #

Enum CRLim 
Instance details

Defined in GHC.Internal.System.Posix.Types

Enum CSocklen 
Instance details

Defined in GHC.Internal.System.Posix.Types

Enum CSpeed 
Instance details

Defined in GHC.Internal.System.Posix.Types

Enum CSsize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Enum CTcflag 
Instance details

Defined in GHC.Internal.System.Posix.Types

Enum CUid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

succ :: CUid -> CUid #

pred :: CUid -> CUid #

toEnum :: Int -> CUid #

fromEnum :: CUid -> Int #

enumFrom :: CUid -> [CUid] #

enumFromThen :: CUid -> CUid -> [CUid] #

enumFromTo :: CUid -> CUid -> [CUid] #

enumFromThenTo :: CUid -> CUid -> CUid -> [CUid] #

Enum Fd 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

succ :: Fd -> Fd #

pred :: Fd -> Fd #

toEnum :: Int -> Fd #

fromEnum :: Fd -> Int #

enumFrom :: Fd -> [Fd] #

enumFromThen :: Fd -> Fd -> [Fd] #

enumFromTo :: Fd -> Fd -> [Fd] #

enumFromThenTo :: Fd -> Fd -> Fd -> [Fd] #

Enum GeneralCategory

Since: base-2.1

Instance details

Defined in GHC.Internal.Unicode

Enum Word16

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Enum Word32

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Enum Word64

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Enum Word8

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Enum Ordering

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Enum Integer

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Enum Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Enum

Enum ()

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

succ :: () -> () #

pred :: () -> () #

toEnum :: Int -> () #

fromEnum :: () -> Int #

enumFrom :: () -> [()] #

enumFromThen :: () -> () -> [()] #

enumFromTo :: () -> () -> [()] #

enumFromThenTo :: () -> () -> () -> [()] #

Enum Bool

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

succ :: Bool -> Bool #

pred :: Bool -> Bool #

toEnum :: Int -> Bool #

fromEnum :: Bool -> Int #

enumFrom :: Bool -> [Bool] #

enumFromThen :: Bool -> Bool -> [Bool] #

enumFromTo :: Bool -> Bool -> [Bool] #

enumFromThenTo :: Bool -> Bool -> Bool -> [Bool] #

Enum Char

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

succ :: Char -> Char #

pred :: Char -> Char #

toEnum :: Int -> Char #

fromEnum :: Char -> Int #

enumFrom :: Char -> [Char] #

enumFromThen :: Char -> Char -> [Char] #

enumFromTo :: Char -> Char -> [Char] #

enumFromThenTo :: Char -> Char -> Char -> [Char] #

Enum Double

fromEnum just truncates its argument, beware of all sorts of overflows.

List generators have extremely peculiar behavior, mandated by Haskell Report 2010:

>>> [0..1.5]
[0.0,1.0,2.0]

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Enum Float

fromEnum just truncates its argument, beware of all sorts of overflows.

List generators have extremely peculiar behavior, mandated by Haskell Report 2010:

>>> [0..1.5 :: Float]
[0.0,1.0,2.0]

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Enum Int

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

succ :: Int -> Int #

pred :: Int -> Int #

toEnum :: Int -> Int #

fromEnum :: Int -> Int #

enumFrom :: Int -> [Int] #

enumFromThen :: Int -> Int -> [Int] #

enumFromTo :: Int -> Int -> [Int] #

enumFromThenTo :: Int -> Int -> Int -> [Int] #

Enum Levity

Since: base-4.16.0.0

Instance details

Defined in GHC.Internal.Enum

Enum VecCount

Since: base-4.10.0.0

Instance details

Defined in GHC.Internal.Enum

Enum VecElem

Since: base-4.10.0.0

Instance details

Defined in GHC.Internal.Enum

Enum Word

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

succ :: Word -> Word #

pred :: Word -> Word #

toEnum :: Int -> Word #

fromEnum :: Word -> Int #

enumFrom :: Word -> [Word] #

enumFromThen :: Word -> Word -> [Word] #

enumFromTo :: Word -> Word -> [Word] #

enumFromThenTo :: Word -> Word -> Word -> [Word] #

Enum a => Enum (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

succ :: First a -> First a #

pred :: First a -> First a #

toEnum :: Int -> First a #

fromEnum :: First a -> Int #

enumFrom :: First a -> [First a] #

enumFromThen :: First a -> First a -> [First a] #

enumFromTo :: First a -> First a -> [First a] #

enumFromThenTo :: First a -> First a -> First a -> [First a] #

Enum a => Enum (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

succ :: Last a -> Last a #

pred :: Last a -> Last a #

toEnum :: Int -> Last a #

fromEnum :: Last a -> Int #

enumFrom :: Last a -> [Last a] #

enumFromThen :: Last a -> Last a -> [Last a] #

enumFromTo :: Last a -> Last a -> [Last a] #

enumFromThenTo :: Last a -> Last a -> Last a -> [Last a] #

Enum a => Enum (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

succ :: Max a -> Max a #

pred :: Max a -> Max a #

toEnum :: Int -> Max a #

fromEnum :: Max a -> Int #

enumFrom :: Max a -> [Max a] #

enumFromThen :: Max a -> Max a -> [Max a] #

enumFromTo :: Max a -> Max a -> [Max a] #

enumFromThenTo :: Max a -> Max a -> Max a -> [Max a] #

Enum a => Enum (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

succ :: Min a -> Min a #

pred :: Min a -> Min a #

toEnum :: Int -> Min a #

fromEnum :: Min a -> Int #

enumFrom :: Min a -> [Min a] #

enumFromThen :: Min a -> Min a -> [Min a] #

enumFromTo :: Min a -> Min a -> [Min a] #

enumFromThenTo :: Min a -> Min a -> Min a -> [Min a] #

Enum a => Enum (WrappedMonoid a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Enum a => Enum (And a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

succ :: And a -> And a #

pred :: And a -> And a #

toEnum :: Int -> And a #

fromEnum :: And a -> Int #

enumFrom :: And a -> [And a] #

enumFromThen :: And a -> And a -> [And a] #

enumFromTo :: And a -> And a -> [And a] #

enumFromThenTo :: And a -> And a -> And a -> [And a] #

Enum a => Enum (Iff a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

succ :: Iff a -> Iff a #

pred :: Iff a -> Iff a #

toEnum :: Int -> Iff a #

fromEnum :: Iff a -> Int #

enumFrom :: Iff a -> [Iff a] #

enumFromThen :: Iff a -> Iff a -> [Iff a] #

enumFromTo :: Iff a -> Iff a -> [Iff a] #

enumFromThenTo :: Iff a -> Iff a -> Iff a -> [Iff a] #

Enum a => Enum (Ior a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

succ :: Ior a -> Ior a #

pred :: Ior a -> Ior a #

toEnum :: Int -> Ior a #

fromEnum :: Ior a -> Int #

enumFrom :: Ior a -> [Ior a] #

enumFromThen :: Ior a -> Ior a -> [Ior a] #

enumFromTo :: Ior a -> Ior a -> [Ior a] #

enumFromThenTo :: Ior a -> Ior a -> Ior a -> [Ior a] #

Enum a => Enum (Xor a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

succ :: Xor a -> Xor a #

pred :: Xor a -> Xor a #

toEnum :: Int -> Xor a #

fromEnum :: Xor a -> Int #

enumFrom :: Xor a -> [Xor a] #

enumFromThen :: Xor a -> Xor a -> [Xor a] #

enumFromTo :: Xor a -> Xor a -> [Xor a] #

enumFromThenTo :: Xor a -> Xor a -> Xor a -> [Xor a] #

Enum a => Enum (Identity a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

(Enum a, Bounded a, Eq a) => Enum (Down a)

Swaps succ and pred of the underlying type.

Since: base-4.18.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

succ :: Down a -> Down a #

pred :: Down a -> Down a #

toEnum :: Int -> Down a #

fromEnum :: Down a -> Int #

enumFrom :: Down a -> [Down a] #

enumFromThen :: Down a -> Down a -> [Down a] #

enumFromTo :: Down a -> Down a -> [Down a] #

enumFromThenTo :: Down a -> Down a -> Down a -> [Down a] #

Integral a => Enum (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

succ :: Ratio a -> Ratio a #

pred :: Ratio a -> Ratio a #

toEnum :: Int -> Ratio a #

fromEnum :: Ratio a -> Int #

enumFrom :: Ratio a -> [Ratio a] #

enumFromThen :: Ratio a -> Ratio a -> [Ratio a] #

enumFromTo :: Ratio a -> Ratio a -> [Ratio a] #

enumFromThenTo :: Ratio a -> Ratio a -> Ratio a -> [Ratio a] #

Enum a => Enum (Solo a) 
Instance details

Defined in GHC.Internal.Enum

Methods

succ :: Solo a -> Solo a #

pred :: Solo a -> Solo a #

toEnum :: Int -> Solo a #

fromEnum :: Solo a -> Int #

enumFrom :: Solo a -> [Solo a] #

enumFromThen :: Solo a -> Solo a -> [Solo a] #

enumFromTo :: Solo a -> Solo a -> [Solo a] #

enumFromThenTo :: Solo a -> Solo a -> Solo a -> [Solo a] #

Enum (Fixed a)

Recall that, for numeric types, succ and pred typically add and subtract 1, respectively. This is not true in the case of Fixed, whose successor and predecessor functions intuitively return the "next" and "previous" values in the enumeration. The results of these functions thus depend on the resolution of the Fixed value. For example, when enumerating values of resolution 10^-3 of type Milli = Fixed E3,

>>> succ (0.000 :: Milli)
0.001

and likewise

>>> pred (0.000 :: Milli)
-0.001

In other words, succ and pred increment and decrement a fixed-precision value by the least amount such that the value's resolution is unchanged. For example, 10^-12 is the smallest (positive) amount that can be added to a value of type Pico = Fixed E12 without changing its resolution, and so

>>> succ (0.000000000000 :: Pico)
0.000000000001

and similarly

>>> pred (0.000000000000 :: Pico)
-0.000000000001

This is worth bearing in mind when defining Fixed arithmetic sequences. In particular, you may be forgiven for thinking the sequence

  [1..10] :: [Pico]

evaluates to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] :: [Pico].

However, this is not true. On the contrary, similarly to the above implementations of succ and pred, enumFromTo :: Pico -> Pico -> [Pico] has a "step size" of 10^-12. Hence, the list [1..10] :: [Pico] has the form

  [1.000000000000, 1.00000000001, 1.00000000002, ..., 10.000000000000]

and contains 9 * 10^12 + 1 values.

Since: base-2.1

Instance details

Defined in Data.Fixed

Methods

succ :: Fixed a -> Fixed a #

pred :: Fixed a -> Fixed a #

toEnum :: Int -> Fixed a #

fromEnum :: Fixed a -> Int #

enumFrom :: Fixed a -> [Fixed a] #

enumFromThen :: Fixed a -> Fixed a -> [Fixed a] #

enumFromTo :: Fixed a -> Fixed a -> [Fixed a] #

enumFromThenTo :: Fixed a -> Fixed a -> Fixed a -> [Fixed a] #

Enum (Proxy s)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

succ :: Proxy s -> Proxy s #

pred :: Proxy s -> Proxy s #

toEnum :: Int -> Proxy s #

fromEnum :: Proxy s -> Int #

enumFrom :: Proxy s -> [Proxy s] #

enumFromThen :: Proxy s -> Proxy s -> [Proxy s] #

enumFromTo :: Proxy s -> Proxy s -> [Proxy s] #

enumFromThenTo :: Proxy s -> Proxy s -> Proxy s -> [Proxy s] #

Enum a => Enum (Const a b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

succ :: Const a b -> Const a b #

pred :: Const a b -> Const a b #

toEnum :: Int -> Const a b #

fromEnum :: Const a b -> Int #

enumFrom :: Const a b -> [Const a b] #

enumFromThen :: Const a b -> Const a b -> [Const a b] #

enumFromTo :: Const a b -> Const a b -> [Const a b] #

enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] #

Enum (f a) => Enum (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

succ :: Ap f a -> Ap f a #

pred :: Ap f a -> Ap f a #

toEnum :: Int -> Ap f a #

fromEnum :: Ap f a -> Int #

enumFrom :: Ap f a -> [Ap f a] #

enumFromThen :: Ap f a -> Ap f a -> [Ap f a] #

enumFromTo :: Ap f a -> Ap f a -> [Ap f a] #

enumFromThenTo :: Ap f a -> Ap f a -> Ap f a -> [Ap f a] #

Enum (f a) => Enum (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

succ :: Alt f a -> Alt f a #

pred :: Alt f a -> Alt f a #

toEnum :: Int -> Alt f a #

fromEnum :: Alt f a -> Int #

enumFrom :: Alt f a -> [Alt f a] #

enumFromThen :: Alt f a -> Alt f a -> [Alt f a] #

enumFromTo :: Alt f a -> Alt f a -> [Alt f a] #

enumFromThenTo :: Alt f a -> Alt f a -> Alt f a -> [Alt f a] #

a ~ b => Enum (a :~: b)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Type.Equality

Methods

succ :: (a :~: b) -> a :~: b #

pred :: (a :~: b) -> a :~: b #

toEnum :: Int -> a :~: b #

fromEnum :: (a :~: b) -> Int #

enumFrom :: (a :~: b) -> [a :~: b] #

enumFromThen :: (a :~: b) -> (a :~: b) -> [a :~: b] #

enumFromTo :: (a :~: b) -> (a :~: b) -> [a :~: b] #

enumFromThenTo :: (a :~: b) -> (a :~: b) -> (a :~: b) -> [a :~: b] #

a ~~ b => Enum (a :~~: b)

Since: base-4.10.0.0

Instance details

Defined in GHC.Internal.Data.Type.Equality

Methods

succ :: (a :~~: b) -> a :~~: b #

pred :: (a :~~: b) -> a :~~: b #

toEnum :: Int -> a :~~: b #

fromEnum :: (a :~~: b) -> Int #

enumFrom :: (a :~~: b) -> [a :~~: b] #

enumFromThen :: (a :~~: b) -> (a :~~: b) -> [a :~~: b] #

enumFromTo :: (a :~~: b) -> (a :~~: b) -> [a :~~: b] #

enumFromThenTo :: (a :~~: b) -> (a :~~: b) -> (a :~~: b) -> [a :~~: b] #

Enum (f (g a)) => Enum (Compose f g a)

Since: base-4.19.0.0

Instance details

Defined in Data.Functor.Compose

Methods

succ :: Compose f g a -> Compose f g a #

pred :: Compose f g a -> Compose f g a #

toEnum :: Int -> Compose f g a #

fromEnum :: Compose f g a -> Int #

enumFrom :: Compose f g a -> [Compose f g a] #

enumFromThen :: Compose f g a -> Compose f g a -> [Compose f g a] #

enumFromTo :: Compose f g a -> Compose f g a -> [Compose f g a] #

enumFromThenTo :: Compose f g a -> Compose f g a -> Compose f g a -> [Compose f g a] #

class Eq a where #

The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq.

The Haskell Report defines no laws for Eq. However, instances are encouraged to follow these properties:

Reflexivity
x == x = True
Symmetry
x == y = y == x
Transitivity
if x == y && y == z = True, then x == z = True
Extensionality
if x == y = True and f is a function whose return type is an instance of Eq, then f x == f y = True
Negation
x /= y = not (x == y)

Minimal complete definition

(==) | (/=)

Methods

(==) :: a -> a -> Bool infix 4 #

(/=) :: a -> a -> Bool infix 4 #

Instances

Instances details
Eq ByteArray

Since: base-4.17.0.0

Instance details

Defined in Data.Array.Byte

Eq Timeout 
Instance details

Defined in System.Timeout

Methods

(==) :: Timeout -> Timeout -> Bool #

(/=) :: Timeout -> Timeout -> Bool #

Eq BigNat 
Instance details

Defined in GHC.Num.BigNat

Methods

(==) :: BigNat -> BigNat -> Bool #

(/=) :: BigNat -> BigNat -> Bool #

Eq Void

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(==) :: Void -> Void -> Bool #

(/=) :: Void -> Void -> Bool #

Eq BlockReason

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Eq ThreadId

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Eq ThreadStatus

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Eq Constr

Equality of constructors

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

(==) :: Constr -> Constr -> Bool #

(/=) :: Constr -> Constr -> Bool #

Eq ConstrRep

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Eq DataRep

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

(==) :: DataRep -> DataRep -> Bool #

(/=) :: DataRep -> DataRep -> Bool #

Eq Fixity

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

(==) :: Fixity -> Fixity -> Bool #

(/=) :: Fixity -> Fixity -> Bool #

Eq All

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(==) :: All -> All -> Bool #

(/=) :: All -> All -> Bool #

Eq Any

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(==) :: Any -> Any -> Bool #

(/=) :: Any -> Any -> Bool #

Eq SomeTypeRep 
Instance details

Defined in GHC.Internal.Data.Typeable.Internal

Eq Unique 
Instance details

Defined in GHC.Internal.Data.Unique

Methods

(==) :: Unique -> Unique -> Bool #

(/=) :: Unique -> Unique -> Bool #

Eq Version

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Version

Methods

(==) :: Version -> Version -> Bool #

(/=) :: Version -> Version -> Bool #

Eq ErrorCall

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Exception

Eq ArithException

Since: base-3.0

Instance details

Defined in GHC.Internal.Exception.Type

Eq SpecConstrAnnotation

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.Exts

Eq IntPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Methods

(==) :: IntPtr -> IntPtr -> Bool #

(/=) :: IntPtr -> IntPtr -> Bool #

Eq WordPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Methods

(==) :: WordPtr -> WordPtr -> Bool #

(/=) :: WordPtr -> WordPtr -> Bool #

Eq Associativity

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Eq DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Eq Fixity

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: Fixity -> Fixity -> Bool #

(/=) :: Fixity -> Fixity -> Bool #

Eq SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Eq SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Eq MaskingState

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.IO

Eq IODeviceType

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.Device

Eq SeekMode

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.Device

Eq CodingProgress

Since: base-4.4.0.0

Instance details

Defined in GHC.Internal.IO.Encoding.Types

Eq ArrayException

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.Exception

Eq AsyncException

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.Exception

Eq ExitCode 
Instance details

Defined in GHC.Internal.IO.Exception

Eq IOErrorType

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.IO.Exception

Eq IOException

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.IO.Exception

Eq HandlePosn

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.IO.Handle

Eq BufferMode

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.Handle.Types

Eq Handle

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.IO.Handle.Types

Methods

(==) :: Handle -> Handle -> Bool #

(/=) :: Handle -> Handle -> Bool #

Eq Newline

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.Handle.Types

Methods

(==) :: Newline -> Newline -> Bool #

(/=) :: Newline -> Newline -> Bool #

Eq NewlineMode

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.Handle.Types

Eq IOMode

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.IOMode

Methods

(==) :: IOMode -> IOMode -> Bool #

(/=) :: IOMode -> IOMode -> Bool #

Eq Int16

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Methods

(==) :: Int16 -> Int16 -> Bool #

(/=) :: Int16 -> Int16 -> Bool #

Eq Int32

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Methods

(==) :: Int32 -> Int32 -> Bool #

(/=) :: Int32 -> Int32 -> Bool #

Eq Int64

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Methods

(==) :: Int64 -> Int64 -> Bool #

(/=) :: Int64 -> Int64 -> Bool #

Eq Int8

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Methods

(==) :: Int8 -> Int8 -> Bool #

(/=) :: Int8 -> Int8 -> Bool #

Eq SrcLoc

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Stack.Types

Methods

(==) :: SrcLoc -> SrcLoc -> Bool #

(/=) :: SrcLoc -> SrcLoc -> Bool #

Eq CBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CBlkCnt -> CBlkCnt -> Bool #

(/=) :: CBlkCnt -> CBlkCnt -> Bool #

Eq CBlkSize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Eq CCc 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CCc -> CCc -> Bool #

(/=) :: CCc -> CCc -> Bool #

Eq CClockId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Eq CDev 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CDev -> CDev -> Bool #

(/=) :: CDev -> CDev -> Bool #

Eq CFsBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Eq CFsFilCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Eq CGid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CGid -> CGid -> Bool #

(/=) :: CGid -> CGid -> Bool #

Eq CId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CId -> CId -> Bool #

(/=) :: CId -> CId -> Bool #

Eq CIno 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CIno -> CIno -> Bool #

(/=) :: CIno -> CIno -> Bool #

Eq CKey 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CKey -> CKey -> Bool #

(/=) :: CKey -> CKey -> Bool #

Eq CMode 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CMode -> CMode -> Bool #

(/=) :: CMode -> CMode -> Bool #

Eq CNfds 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CNfds -> CNfds -> Bool #

(/=) :: CNfds -> CNfds -> Bool #

Eq CNlink 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CNlink -> CNlink -> Bool #

(/=) :: CNlink -> CNlink -> Bool #

Eq COff 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: COff -> COff -> Bool #

(/=) :: COff -> COff -> Bool #

Eq CPid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CPid -> CPid -> Bool #

(/=) :: CPid -> CPid -> Bool #

Eq CRLim 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CRLim -> CRLim -> Bool #

(/=) :: CRLim -> CRLim -> Bool #

Eq CSocklen 
Instance details

Defined in GHC.Internal.System.Posix.Types

Eq CSpeed 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CSpeed -> CSpeed -> Bool #

(/=) :: CSpeed -> CSpeed -> Bool #

Eq CSsize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CSsize -> CSsize -> Bool #

(/=) :: CSsize -> CSsize -> Bool #

Eq CTcflag 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CTcflag -> CTcflag -> Bool #

(/=) :: CTcflag -> CTcflag -> Bool #

Eq CTimer 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CTimer -> CTimer -> Bool #

(/=) :: CTimer -> CTimer -> Bool #

Eq CUid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: CUid -> CUid -> Bool #

(/=) :: CUid -> CUid -> Bool #

Eq Fd 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

(==) :: Fd -> Fd -> Bool #

(/=) :: Fd -> Fd -> Bool #

Eq GeneralCategory

Since: base-2.1

Instance details

Defined in GHC.Internal.Unicode

Eq Word16

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Methods

(==) :: Word16 -> Word16 -> Bool #

(/=) :: Word16 -> Word16 -> Bool #

Eq Word32

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Methods

(==) :: Word32 -> Word32 -> Bool #

(/=) :: Word32 -> Word32 -> Bool #

Eq Word64

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Methods

(==) :: Word64 -> Word64 -> Bool #

(/=) :: Word64 -> Word64 -> Bool #

Eq Word8

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Methods

(==) :: Word8 -> Word8 -> Bool #

(/=) :: Word8 -> Word8 -> Bool #

Eq Module 
Instance details

Defined in GHC.Classes

Methods

(==) :: Module -> Module -> Bool #

(/=) :: Module -> Module -> Bool #

Eq Ordering 
Instance details

Defined in GHC.Classes

Eq TrName 
Instance details

Defined in GHC.Classes

Methods

(==) :: TrName -> TrName -> Bool #

(/=) :: TrName -> TrName -> Bool #

Eq TyCon 
Instance details

Defined in GHC.Classes

Methods

(==) :: TyCon -> TyCon -> Bool #

(/=) :: TyCon -> TyCon -> Bool #

Eq Integer 
Instance details

Defined in GHC.Num.Integer

Methods

(==) :: Integer -> Integer -> Bool #

(/=) :: Integer -> Integer -> Bool #

Eq Natural 
Instance details

Defined in GHC.Num.Natural

Methods

(==) :: Natural -> Natural -> Bool #

(/=) :: Natural -> Natural -> Bool #

Eq () 
Instance details

Defined in GHC.Classes

Methods

(==) :: () -> () -> Bool #

(/=) :: () -> () -> Bool #

Eq Bool 
Instance details

Defined in GHC.Classes

Methods

(==) :: Bool -> Bool -> Bool #

(/=) :: Bool -> Bool -> Bool #

Eq Char 
Instance details

Defined in GHC.Classes

Methods

(==) :: Char -> Char -> Bool #

(/=) :: Char -> Char -> Bool #

Eq Double

Note that due to the presence of NaN, Double's Eq instance does not satisfy reflexivity.

>>> 0/0 == (0/0 :: Double)
False

Also note that Double's Eq instance does not satisfy substitutivity:

>>> 0 == (-0 :: Double)
True
>>> recip 0 == recip (-0 :: Double)
False
Instance details

Defined in GHC.Classes

Methods

(==) :: Double -> Double -> Bool #

(/=) :: Double -> Double -> Bool #

Eq Float

Note that due to the presence of NaN, Float's Eq instance does not satisfy reflexivity.

>>> 0/0 == (0/0 :: Float)
False

Also note that Float's Eq instance does not satisfy extensionality:

>>> 0 == (-0 :: Float)
True
>>> recip 0 == recip (-0 :: Float)
False
Instance details

Defined in GHC.Classes

Methods

(==) :: Float -> Float -> Bool #

(/=) :: Float -> Float -> Bool #

Eq Int 
Instance details

Defined in GHC.Classes

Methods

(==) :: Int -> Int -> Bool #

(/=) :: Int -> Int -> Bool #

Eq Word 
Instance details

Defined in GHC.Classes

Methods

(==) :: Word -> Word -> Bool #

(/=) :: Word -> Word -> Bool #

Eq (Chan a)

Since: base-4.4.0.0

Instance details

Defined in Control.Concurrent.Chan

Methods

(==) :: Chan a -> Chan a -> Bool #

(/=) :: Chan a -> Chan a -> Bool #

Eq (MutableByteArray s)

Since: base-4.17.0.0

Instance details

Defined in Data.Array.Byte

Eq a => Eq (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

(==) :: Complex a -> Complex a -> Bool #

(/=) :: Complex a -> Complex a -> Bool #

Eq a => Eq (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Eq a => Eq (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Eq a => Eq (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(==) :: Max a -> Max a -> Bool #

(/=) :: Max a -> Max a -> Bool #

Eq a => Eq (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(==) :: Min a -> Min a -> Bool #

(/=) :: Min a -> Min a -> Bool #

Eq m => Eq (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Eq a => Eq (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(==) :: NonEmpty a -> NonEmpty a -> Bool #

(/=) :: NonEmpty a -> NonEmpty a -> Bool #

Eq (TVar a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Methods

(==) :: TVar a -> TVar a -> Bool #

(/=) :: TVar a -> TVar a -> Bool #

Eq a => Eq (And a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

(==) :: And a -> And a -> Bool #

(/=) :: And a -> And a -> Bool #

Eq a => Eq (Iff a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

(==) :: Iff a -> Iff a -> Bool #

(/=) :: Iff a -> Iff a -> Bool #

Eq a => Eq (Ior a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

(==) :: Ior a -> Ior a -> Bool #

(/=) :: Ior a -> Ior a -> Bool #

Eq a => Eq (Xor a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

(==) :: Xor a -> Xor a -> Bool #

(/=) :: Xor a -> Xor a -> Bool #

Eq a => Eq (Identity a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Methods

(==) :: Identity a -> Identity a -> Bool #

(/=) :: Identity a -> Identity a -> Bool #

Eq a => Eq (First a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Eq a => Eq (Last a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Eq a => Eq (Down a)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

(==) :: Down a -> Down a -> Bool #

(/=) :: Down a -> Down a -> Bool #

Eq a => Eq (Dual a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(==) :: Dual a -> Dual a -> Bool #

(/=) :: Dual a -> Dual a -> Bool #

Eq a => Eq (Product a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(==) :: Product a -> Product a -> Bool #

(/=) :: Product a -> Product a -> Bool #

Eq a => Eq (Sum a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(==) :: Sum a -> Sum a -> Bool #

(/=) :: Sum a -> Sum a -> Bool #

Eq (ForeignPtr a)

Since: base-2.1

Instance details

Defined in GHC.Internal.ForeignPtr

Methods

(==) :: ForeignPtr a -> ForeignPtr a -> Bool #

(/=) :: ForeignPtr a -> ForeignPtr a -> Bool #

Eq a => Eq (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Functor.ZipList

Methods

(==) :: ZipList a -> ZipList a -> Bool #

(/=) :: ZipList a -> ZipList a -> Bool #

Eq p => Eq (Par1 p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: Par1 p -> Par1 p -> Bool #

(/=) :: Par1 p -> Par1 p -> Bool #

Eq (IORef a)

Pointer equality.

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.IORef

Methods

(==) :: IORef a -> IORef a -> Bool #

(/=) :: IORef a -> IORef a -> Bool #

Eq (MVar a)

Compares the underlying pointers.

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.MVar

Methods

(==) :: MVar a -> MVar a -> Bool #

(/=) :: MVar a -> MVar a -> Bool #

Eq (FunPtr a) 
Instance details

Defined in GHC.Internal.Ptr

Methods

(==) :: FunPtr a -> FunPtr a -> Bool #

(/=) :: FunPtr a -> FunPtr a -> Bool #

Eq (Ptr a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Ptr

Methods

(==) :: Ptr a -> Ptr a -> Bool #

(/=) :: Ptr a -> Ptr a -> Bool #

Eq a => Eq (Ratio a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Real

Methods

(==) :: Ratio a -> Ratio a -> Bool #

(/=) :: Ratio a -> Ratio a -> Bool #

Eq (StablePtr a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Stable

Methods

(==) :: StablePtr a -> StablePtr a -> Bool #

(/=) :: StablePtr a -> StablePtr a -> Bool #

Eq (StableName a)

Since: base-2.1

Instance details

Defined in GHC.Internal.StableName

Methods

(==) :: StableName a -> StableName a -> Bool #

(/=) :: StableName a -> StableName a -> Bool #

Eq a => Eq (Maybe a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Maybe

Methods

(==) :: Maybe a -> Maybe a -> Bool #

(/=) :: Maybe a -> Maybe a -> Bool #

Eq a => Eq (Solo a) 
Instance details

Defined in GHC.Classes

Methods

(==) :: Solo a -> Solo a -> Bool #

(/=) :: Solo a -> Solo a -> Bool #

Eq a => Eq [a] 
Instance details

Defined in GHC.Classes

Methods

(==) :: [a] -> [a] -> Bool #

(/=) :: [a] -> [a] -> Bool #

Eq (Fixed a)

Since: base-2.1

Instance details

Defined in Data.Fixed

Methods

(==) :: Fixed a -> Fixed a -> Bool #

(/=) :: Fixed a -> Fixed a -> Bool #

Eq a => Eq (Arg a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(==) :: Arg a b -> Arg a b -> Bool #

(/=) :: Arg a b -> Arg a b -> Bool #

(Eq a, Eq b) => Eq (Either a b)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Either

Methods

(==) :: Either a b -> Either a b -> Bool #

(/=) :: Either a b -> Either a b -> Bool #

Eq (Proxy s)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

(==) :: Proxy s -> Proxy s -> Bool #

(/=) :: Proxy s -> Proxy s -> Bool #

Eq (TypeRep a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Typeable.Internal

Methods

(==) :: TypeRep a -> TypeRep a -> Bool #

(/=) :: TypeRep a -> TypeRep a -> Bool #

Eq (U1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: U1 p -> U1 p -> Bool #

(/=) :: U1 p -> U1 p -> Bool #

Eq (V1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: V1 p -> V1 p -> Bool #

(/=) :: V1 p -> V1 p -> Bool #

Eq (STRef s a)

Pointer equality.

Since: base-2.1

Instance details

Defined in GHC.Internal.STRef

Methods

(==) :: STRef s a -> STRef s a -> Bool #

(/=) :: STRef s a -> STRef s a -> Bool #

(Eq a, Eq b) => Eq (a, b) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b) -> (a, b) -> Bool #

(/=) :: (a, b) -> (a, b) -> Bool #

Eq a => Eq (Const a b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

(==) :: Const a b -> Const a b -> Bool #

(/=) :: Const a b -> Const a b -> Bool #

Eq (f a) => Eq (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(==) :: Ap f a -> Ap f a -> Bool #

(/=) :: Ap f a -> Ap f a -> Bool #

Eq (f a) => Eq (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(==) :: Alt f a -> Alt f a -> Bool #

(/=) :: Alt f a -> Alt f a -> Bool #

Eq (a :~: b)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Type.Equality

Methods

(==) :: (a :~: b) -> (a :~: b) -> Bool #

(/=) :: (a :~: b) -> (a :~: b) -> Bool #

(Generic1 f, Eq (Rep1 f a)) => Eq (Generically1 f a)

Since: base-4.18.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: Generically1 f a -> Generically1 f a -> Bool #

(/=) :: Generically1 f a -> Generically1 f a -> Bool #

Eq (f p) => Eq (Rec1 f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: Rec1 f p -> Rec1 f p -> Bool #

(/=) :: Rec1 f p -> Rec1 f p -> Bool #

Eq (URec (Ptr ()) p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(/=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

Eq (URec Char p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec Char p -> URec Char p -> Bool #

(/=) :: URec Char p -> URec Char p -> Bool #

Eq (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec Double p -> URec Double p -> Bool #

(/=) :: URec Double p -> URec Double p -> Bool #

Eq (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec Float p -> URec Float p -> Bool #

(/=) :: URec Float p -> URec Float p -> Bool #

Eq (URec Int p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec Int p -> URec Int p -> Bool #

(/=) :: URec Int p -> URec Int p -> Bool #

Eq (URec Word p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec Word p -> URec Word p -> Bool #

(/=) :: URec Word p -> URec Word p -> Bool #

(Eq a, Eq b, Eq c) => Eq (a, b, c) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c) -> (a, b, c) -> Bool #

(/=) :: (a, b, c) -> (a, b, c) -> Bool #

(Eq (f a), Eq (g a)) => Eq (Product f g a)

Since: base-4.18.0.0

Instance details

Defined in Data.Functor.Product

Methods

(==) :: Product f g a -> Product f g a -> Bool #

(/=) :: Product f g a -> Product f g a -> Bool #

(Eq (f a), Eq (g a)) => Eq (Sum f g a)

Since: base-4.18.0.0

Instance details

Defined in Data.Functor.Sum

Methods

(==) :: Sum f g a -> Sum f g a -> Bool #

(/=) :: Sum f g a -> Sum f g a -> Bool #

Eq (a :~~: b)

Since: base-4.10.0.0

Instance details

Defined in GHC.Internal.Data.Type.Equality

Methods

(==) :: (a :~~: b) -> (a :~~: b) -> Bool #

(/=) :: (a :~~: b) -> (a :~~: b) -> Bool #

(Eq (f p), Eq (g p)) => Eq ((f :*: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: (f :*: g) p -> (f :*: g) p -> Bool #

(/=) :: (f :*: g) p -> (f :*: g) p -> Bool #

(Eq (f p), Eq (g p)) => Eq ((f :+: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: (f :+: g) p -> (f :+: g) p -> Bool #

(/=) :: (f :+: g) p -> (f :+: g) p -> Bool #

Eq c => Eq (K1 i c p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: K1 i c p -> K1 i c p -> Bool #

(/=) :: K1 i c p -> K1 i c p -> Bool #

(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(/=) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

Eq (f (g a)) => Eq (Compose f g a)

Since: base-4.18.0.0

Instance details

Defined in Data.Functor.Compose

Methods

(==) :: Compose f g a -> Compose f g a -> Bool #

(/=) :: Compose f g a -> Compose f g a -> Bool #

Eq (f (g p)) => Eq ((f :.: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: (f :.: g) p -> (f :.: g) p -> Bool #

(/=) :: (f :.: g) p -> (f :.: g) p -> Bool #

Eq (f p) => Eq (M1 i c f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: M1 i c f p -> M1 i c f p -> Bool #

(/=) :: M1 i c f p -> M1 i c f p -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(/=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(/=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(/=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

class Arrow a => ArrowApply (a :: Type -> Type -> Type) where #

Some arrows allow application of arrow inputs to other inputs. Instances should satisfy the following laws:

Such arrows are equivalent to monads (see ArrowMonad).

Methods

app :: a (a b c, b) c #

Instances

Instances details
Monad m => ArrowApply (Kleisli m)

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

app :: Kleisli m (Kleisli m b c, b) c #

ArrowApply (->)

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

app :: (b -> c, b) -> c #

class Arrow a => ArrowChoice (a :: Type -> Type -> Type) where #

Choice, for arrows that support it. This class underlies the if and case constructs in arrow notation.

Instances should satisfy the following laws:

where

assocsum (Left (Left x)) = Left x
assocsum (Left (Right y)) = Right (Left y)
assocsum (Right z) = Right (Right z)

The other combinators have sensible default definitions, which may be overridden for efficiency.

Minimal complete definition

(left | (+++))

Methods

left :: a b c -> a (Either b d) (Either c d) #

Feed marked inputs through the argument arrow, passing the rest through unchanged to the output.

right :: a b c -> a (Either d b) (Either d c) #

A mirror image of left.

The default definition may be overridden with a more efficient version if desired.

(+++) :: a b c -> a b' c' -> a (Either b b') (Either c c') infixr 2 #

Split the input between the two argument arrows, retagging and merging their outputs. Note that this is in general not a functor.

The default definition may be overridden with a more efficient version if desired.

(|||) :: a b d -> a c d -> a (Either b c) d infixr 2 #

Fanin: Split the input between the two argument arrows and merge their outputs.

The default definition may be overridden with a more efficient version if desired.

Instances

Instances details
Monad m => ArrowChoice (Kleisli m)

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

left :: Kleisli m b c -> Kleisli m (Either b d) (Either c d) #

right :: Kleisli m b c -> Kleisli m (Either d b) (Either d c) #

(+++) :: Kleisli m b c -> Kleisli m b' c' -> Kleisli m (Either b b') (Either c c') #

(|||) :: Kleisli m b d -> Kleisli m c d -> Kleisli m (Either b c) d #

ArrowChoice (->)

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

left :: (b -> c) -> Either b d -> Either c d #

right :: (b -> c) -> Either d b -> Either d c #

(+++) :: (b -> c) -> (b' -> c') -> Either b b' -> Either c c' #

(|||) :: (b -> d) -> (c -> d) -> Either b c -> d #

class Arrow a => ArrowLoop (a :: Type -> Type -> Type) where #

The loop operator expresses computations in which an output value is fed back as input, although the computation occurs only once. It underlies the rec value recursion construct in arrow notation. loop should satisfy the following laws:

extension
loop (arr f) = arr (\ b -> fst (fix (\ (c,d) -> f (b,d))))
left tightening
loop (first h >>> f) = h >>> loop f
right tightening
loop (f >>> first h) = loop f >>> h
sliding
loop (f >>> arr (id *** k)) = loop (arr (id *** k) >>> f)
vanishing
loop (loop f) = loop (arr unassoc >>> f >>> arr assoc)
superposing
second (loop f) = loop (arr assoc >>> second f >>> arr unassoc)

where

assoc ((a,b),c) = (a,(b,c))
unassoc (a,(b,c)) = ((a,b),c)

Methods

loop :: a (b, d) (c, d) -> a b c #

Instances

Instances details
MonadFix m => ArrowLoop (Kleisli m)

Beware that for many monads (those for which the >>= operation is strict) this instance will not satisfy the right-tightening law required by the ArrowLoop class.

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

loop :: Kleisli m (b, d) (c, d) -> Kleisli m b c #

ArrowLoop (->)

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

loop :: ((b, d) -> (c, d)) -> b -> c #

fromIntegral :: (Integral a, Num b) => a -> b #

General coercion from Integral types.

WARNING: This function performs silent truncation if the result type is not at least as big as the argument's type.

realToFrac :: (Real a, Fractional b) => a -> b #

General coercion to Fractional types.

WARNING: This function goes through the Rational type, which does not have values for NaN for example. This means it does not round-trip.

For Double it also behaves differently with or without -O0:

Prelude> realToFrac nan -- With -O0
-Infinity
Prelude> realToFrac nan
NaN

class (Real a, Enum a) => Integral a where #

Integral numbers, supporting integer division.

The Haskell Report defines no laws for Integral. However, Integral instances are customarily expected to define a Euclidean domain and have the following properties for the div/mod and quot/rem pairs, given suitable Euclidean functions f and g:

  • x = y * quot x y + rem x y with rem x y = fromInteger 0 or g (rem x y) < g y
  • x = y * div x y + mod x y with mod x y = fromInteger 0 or f (mod x y) < f y

An example of a suitable Euclidean function, for Integer's instance, is abs.

In addition, toInteger should be total, and fromInteger should be a left inverse for it, i.e. fromInteger (toInteger i) = i.

Minimal complete definition

quotRem, toInteger

Methods

quot :: a -> a -> a infixl 7 #

Integer division truncated toward zero.

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

rem :: a -> a -> a infixl 7 #

Integer remainder, satisfying

(x `quot` y)*y + (x `rem` y) == x

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

div :: a -> a -> a infixl 7 #

Integer division truncated toward negative infinity.

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

mod :: a -> a -> a infixl 7 #

Integer modulus, satisfying

(x `div` y)*y + (x `mod` y) == x

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

quotRem :: a -> a -> (a, a) #

Simultaneous quot and rem.

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

divMod :: a -> a -> (a, a) #

simultaneous div and mod.

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

toInteger :: a -> Integer #

Conversion to Integer.

Instances

Instances details
Integral IntPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Integral WordPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Integral Int16

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Integral Int32

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Integral Int64

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Integral Int8

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Methods

quot :: Int8 -> Int8 -> Int8 #

rem :: Int8 -> Int8 -> Int8 #

div :: Int8 -> Int8 -> Int8 #

mod :: Int8 -> Int8 -> Int8 #

quotRem :: Int8 -> Int8 -> (Int8, Int8) #

divMod :: Int8 -> Int8 -> (Int8, Int8) #

toInteger :: Int8 -> Integer #

Integral CBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CBlkSize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CClockId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CDev 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

quot :: CDev -> CDev -> CDev #

rem :: CDev -> CDev -> CDev #

div :: CDev -> CDev -> CDev #

mod :: CDev -> CDev -> CDev #

quotRem :: CDev -> CDev -> (CDev, CDev) #

divMod :: CDev -> CDev -> (CDev, CDev) #

toInteger :: CDev -> Integer #

Integral CFsBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CFsFilCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CGid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

quot :: CGid -> CGid -> CGid #

rem :: CGid -> CGid -> CGid #

div :: CGid -> CGid -> CGid #

mod :: CGid -> CGid -> CGid #

quotRem :: CGid -> CGid -> (CGid, CGid) #

divMod :: CGid -> CGid -> (CGid, CGid) #

toInteger :: CGid -> Integer #

Integral CId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

quot :: CId -> CId -> CId #

rem :: CId -> CId -> CId #

div :: CId -> CId -> CId #

mod :: CId -> CId -> CId #

quotRem :: CId -> CId -> (CId, CId) #

divMod :: CId -> CId -> (CId, CId) #

toInteger :: CId -> Integer #

Integral CIno 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

quot :: CIno -> CIno -> CIno #

rem :: CIno -> CIno -> CIno #

div :: CIno -> CIno -> CIno #

mod :: CIno -> CIno -> CIno #

quotRem :: CIno -> CIno -> (CIno, CIno) #

divMod :: CIno -> CIno -> (CIno, CIno) #

toInteger :: CIno -> Integer #

Integral CKey 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

quot :: CKey -> CKey -> CKey #

rem :: CKey -> CKey -> CKey #

div :: CKey -> CKey -> CKey #

mod :: CKey -> CKey -> CKey #

quotRem :: CKey -> CKey -> (CKey, CKey) #

divMod :: CKey -> CKey -> (CKey, CKey) #

toInteger :: CKey -> Integer #

Integral CMode 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CNfds 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CNlink 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral COff 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

quot :: COff -> COff -> COff #

rem :: COff -> COff -> COff #

div :: COff -> COff -> COff #

mod :: COff -> COff -> COff #

quotRem :: COff -> COff -> (COff, COff) #

divMod :: COff -> COff -> (COff, COff) #

toInteger :: COff -> Integer #

Integral CPid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

quot :: CPid -> CPid -> CPid #

rem :: CPid -> CPid -> CPid #

div :: CPid -> CPid -> CPid #

mod :: CPid -> CPid -> CPid #

quotRem :: CPid -> CPid -> (CPid, CPid) #

divMod :: CPid -> CPid -> (CPid, CPid) #

toInteger :: CPid -> Integer #

Integral CRLim 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CSocklen 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CSsize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CTcflag 
Instance details

Defined in GHC.Internal.System.Posix.Types

Integral CUid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

quot :: CUid -> CUid -> CUid #

rem :: CUid -> CUid -> CUid #

div :: CUid -> CUid -> CUid #

mod :: CUid -> CUid -> CUid #

quotRem :: CUid -> CUid -> (CUid, CUid) #

divMod :: CUid -> CUid -> (CUid, CUid) #

toInteger :: CUid -> Integer #

Integral Fd 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

quot :: Fd -> Fd -> Fd #

rem :: Fd -> Fd -> Fd #

div :: Fd -> Fd -> Fd #

mod :: Fd -> Fd -> Fd #

quotRem :: Fd -> Fd -> (Fd, Fd) #

divMod :: Fd -> Fd -> (Fd, Fd) #

toInteger :: Fd -> Integer #

Integral Word16

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Integral Word32

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Integral Word64

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Integral Word8

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Integral Integer

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Integral Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Real

Integral Int

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

quot :: Int -> Int -> Int #

rem :: Int -> Int -> Int #

div :: Int -> Int -> Int #

mod :: Int -> Int -> Int #

quotRem :: Int -> Int -> (Int, Int) #

divMod :: Int -> Int -> (Int, Int) #

toInteger :: Int -> Integer #

Integral Word

Since: base-2.1

Instance details

Defined in GHC.Internal.Real

Methods

quot :: Word -> Word -> Word #

rem :: Word -> Word -> Word #

div :: Word -> Word -> Word #

mod :: Word -> Word -> Word #

quotRem :: Word -> Word -> (Word, Word) #

divMod :: Word -> Word -> (Word, Word) #

toInteger :: Word -> Integer #

Integral a => Integral (Identity a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Integral a => Integral (Const a b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

quot :: Const a b -> Const a b -> Const a b #

rem :: Const a b -> Const a b -> Const a b #

div :: Const a b -> Const a b -> Const a b #

mod :: Const a b -> Const a b -> Const a b #

quotRem :: Const a b -> Const a b -> (Const a b, Const a b) #

divMod :: Const a b -> Const a b -> (Const a b, Const a b) #

toInteger :: Const a b -> Integer #

Integral (f (g a)) => Integral (Compose f g a)

Since: base-4.19.0.0

Instance details

Defined in Data.Functor.Compose

Methods

quot :: Compose f g a -> Compose f g a -> Compose f g a #

rem :: Compose f g a -> Compose f g a -> Compose f g a #

div :: Compose f g a -> Compose f g a -> Compose f g a #

mod :: Compose f g a -> Compose f g a -> Compose f g a #

quotRem :: Compose f g a -> Compose f g a -> (Compose f g a, Compose f g a) #

divMod :: Compose f g a -> Compose f g a -> (Compose f g a, Compose f g a) #

toInteger :: Compose f g a -> Integer #

class (Num a, Ord a) => Real a where #

Real numbers.

The Haskell report defines no laws for Real, however Real instances are customarily expected to adhere to the following law:

Coherence with fromRational
if the type also implements Fractional, then fromRational is a left inverse for toRational, i.e. fromRational (toRational i) = i

The law does not hold for Float, Double, CFloat, CDouble, etc., because these types contain non-finite values, which cannot be roundtripped through Rational.

Methods

toRational :: a -> Rational #

Rational equivalent of its real argument with full precision.

Instances

Instances details
Real IntPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Real WordPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Real Int16

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Methods

toRational :: Int16 -> Rational #

Real Int32

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Methods

toRational :: Int32 -> Rational #

Real Int64

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Methods

toRational :: Int64 -> Rational #

Real Int8

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Methods

toRational :: Int8 -> Rational #

Real CBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CBlkSize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CCc 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

toRational :: CCc -> Rational #

Real CClockId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CDev 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

toRational :: CDev -> Rational #

Real CFsBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CFsFilCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CGid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

toRational :: CGid -> Rational #

Real CId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

toRational :: CId -> Rational #

Real CIno 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

toRational :: CIno -> Rational #

Real CKey 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

toRational :: CKey -> Rational #

Real CMode 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

toRational :: CMode -> Rational #

Real CNfds 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

toRational :: CNfds -> Rational #

Real CNlink 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real COff 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

toRational :: COff -> Rational #

Real CPid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

toRational :: CPid -> Rational #

Real CRLim 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

toRational :: CRLim -> Rational #

Real CSocklen 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CSpeed 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CSsize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CTcflag 
Instance details

Defined in GHC.Internal.System.Posix.Types

Real CUid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

toRational :: CUid -> Rational #

Real Fd 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

toRational :: Fd -> Rational #

Real Word16

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Real Word32

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Real Word64

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Real Word8

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Methods

toRational :: Word8 -> Rational #

Real Integer

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Real Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Real

Real Double

Beware that toRational generates garbage for non-finite arguments:

>>> toRational (1/0)
179769313 (and 300 more digits...) % 1
>>> toRational (0/0)
269653970 (and 300 more digits...) % 1

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Real Float

Beware that toRational generates garbage for non-finite arguments:

>>> toRational (1/0 :: Float)
340282366920938463463374607431768211456 % 1
>>> toRational (0/0 :: Float)
510423550381407695195061911147652317184 % 1

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Methods

toRational :: Float -> Rational #

Real Int

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

toRational :: Int -> Rational #

Real Word

Since: base-2.1

Instance details

Defined in GHC.Internal.Real

Methods

toRational :: Word -> Rational #

Real a => Real (Identity a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Methods

toRational :: Identity a -> Rational #

Real a => Real (Down a)

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

toRational :: Down a -> Rational #

Integral a => Real (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

toRational :: Ratio a -> Rational #

HasResolution a => Real (Fixed a)

Since: base-2.1

Instance details

Defined in Data.Fixed

Methods

toRational :: Fixed a -> Rational #

Real a => Real (Const a b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

toRational :: Const a b -> Rational #

Real (f (g a)) => Real (Compose f g a)

Since: base-4.19.0.0

Instance details

Defined in Data.Functor.Compose

Methods

toRational :: Compose f g a -> Rational #

class IsList l where #

The IsList class and its methods are intended to be used in conjunction with the OverloadedLists extension.

Since: base-4.7.0.0

Minimal complete definition

fromList, toList

Associated Types

type Item l #

The Item type function returns the type of items of the structure l.

Methods

fromList :: [Item l] -> l #

The fromList function constructs the structure l from the given list of Item l

fromListN :: Int -> [Item l] -> l #

The fromListN function takes the input list's length and potentially uses it to construct the structure l more efficiently compared to fromList. If the given number does not equal to the input list's length the behaviour of fromListN is not specified.

fromListN (length xs) xs == fromList xs

toList :: l -> [Item l] #

The toList function extracts a list of Item l from the structure l. It should satisfy fromList . toList = id.

Instances

Instances details
IsList ByteArray

Since: base-4.17.0.0

Instance details

Defined in Data.Array.Byte

Associated Types

type Item ByteArray 
Instance details

Defined in Data.Array.Byte

IsList Version

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.IsList

Associated Types

type Item Version 
Instance details

Defined in GHC.Internal.IsList

IsList CallStack

Be aware that 'fromList . toList = id' only for unfrozen CallStacks, since toList removes frozenness information.

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.IsList

Associated Types

type Item CallStack 
Instance details

Defined in GHC.Internal.IsList

IsList (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.IsList

Associated Types

type Item (NonEmpty a) 
Instance details

Defined in GHC.Internal.IsList

type Item (NonEmpty a) = a

Methods

fromList :: [Item (NonEmpty a)] -> NonEmpty a #

fromListN :: Int -> [Item (NonEmpty a)] -> NonEmpty a #

toList :: NonEmpty a -> [Item (NonEmpty a)] #

IsList (ZipList a)

Since: base-4.15.0.0

Instance details

Defined in GHC.Internal.IsList

Associated Types

type Item (ZipList a) 
Instance details

Defined in GHC.Internal.IsList

type Item (ZipList a) = a

Methods

fromList :: [Item (ZipList a)] -> ZipList a #

fromListN :: Int -> [Item (ZipList a)] -> ZipList a #

toList :: ZipList a -> [Item (ZipList a)] #

IsList [a]

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.IsList

Associated Types

type Item [a] 
Instance details

Defined in GHC.Internal.IsList

type Item [a] = a

Methods

fromList :: [Item [a]] -> [a] #

fromListN :: Int -> [Item [a]] -> [a] #

toList :: [a] -> [Item [a]] #

class Semigroup a => Monoid a where #

The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:

Right identity
x <> mempty = x
Left identity
mempty <> x = x
Associativity
x <> (y <> z) = (x <> y) <> z (Semigroup law)
Concatenation
mconcat = foldr (<>) mempty

You can alternatively define mconcat instead of mempty, in which case the laws are:

Unit
mconcat (pure x) = x
Multiplication
mconcat (join xss) = mconcat (fmap mconcat xss)
Subclass
mconcat (toList xs) = sconcat xs

The method names refer to the monoid of lists under concatenation, but there are many other instances.

Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product.

NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.

Minimal complete definition

mempty | mconcat

Methods

mempty :: a #

Identity of mappend

Examples

Expand
>>> "Hello world" <> mempty
"Hello world"
>>> mempty <> [1, 2, 3]
[1,2,3]

mappend :: a -> a -> a #

An associative operation

NOTE: This method is redundant and has the default implementation mappend = (<>) since base-4.11.0.0. Should it be implemented manually, since mappend is a synonym for (<>), it is expected that the two functions are defined the same way. In a future GHC release mappend will be removed from Monoid.

mconcat :: [a] -> a #

Fold a list using the monoid.

For most types, the default definition for mconcat will be used, but the function is included in the class definition so that an optimized version can be provided for specific types.

>>> mconcat ["Hello", " ", "Haskell", "!"]
"Hello Haskell!"

Instances

Instances details
Monoid ByteArray

Since: base-4.17.0.0

Instance details

Defined in Data.Array.Byte

Monoid All

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

mempty :: All #

mappend :: All -> All -> All #

mconcat :: [All] -> All #

Monoid Any

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

mempty :: Any #

mappend :: Any -> Any -> Any #

mconcat :: [Any] -> Any #

Monoid Ordering

Since: base-2.1

Instance details

Defined in GHC.Internal.Base

Monoid ()

Since: base-2.1

Instance details

Defined in GHC.Internal.Base

Methods

mempty :: () #

mappend :: () -> () -> () #

mconcat :: [()] -> () #

Monoid (Comparison a)

mempty on comparisons always returns EQ. Without newtypes this equals pure (pure EQ).

mempty :: Comparison a
mempty = Comparison _ _ -> EQ
Instance details

Defined in Data.Functor.Contravariant

Monoid (Equivalence a)

mempty on equivalences always returns True. Without newtypes this equals pure (pure True).

mempty :: Equivalence a
mempty = Equivalence _ _ -> True
Instance details

Defined in Data.Functor.Contravariant

Monoid (Predicate a)

mempty on predicates always returns True. Without newtypes this equals pure True.

mempty :: Predicate a
mempty = _ -> True
Instance details

Defined in Data.Functor.Contravariant

(Ord a, Bounded a) => Monoid (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Max a #

mappend :: Max a -> Max a -> Max a #

mconcat :: [Max a] -> Max a #

(Ord a, Bounded a) => Monoid (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Min a #

mappend :: Min a -> Min a -> Min a #

mconcat :: [Min a] -> Min a #

Monoid m => Monoid (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Monoid a => Monoid (STM a)

Since: base-4.17.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Methods

mempty :: STM a #

mappend :: STM a -> STM a -> STM a #

mconcat :: [STM a] -> STM a #

FiniteBits a => Monoid (And a)

This constraint is arguably too strong. However, as some types (such as Natural) have undefined complement, this is the only safe choice.

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

mempty :: And a #

mappend :: And a -> And a -> And a #

mconcat :: [And a] -> And a #

FiniteBits a => Monoid (Iff a)

This constraint is arguably too strong. However, as some types (such as Natural) have undefined complement, this is the only safe choice.

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

mempty :: Iff a #

mappend :: Iff a -> Iff a -> Iff a #

mconcat :: [Iff a] -> Iff a #

Bits a => Monoid (Ior a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

mempty :: Ior a #

mappend :: Ior a -> Ior a -> Ior a #

mconcat :: [Ior a] -> Ior a #

Bits a => Monoid (Xor a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

mempty :: Xor a #

mappend :: Xor a -> Xor a -> Xor a #

mconcat :: [Xor a] -> Xor a #

Monoid a => Monoid (Identity a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Methods

mempty :: Identity a #

mappend :: Identity a -> Identity a -> Identity a #

mconcat :: [Identity a] -> Identity a #

Monoid (First a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

mempty :: First a #

mappend :: First a -> First a -> First a #

mconcat :: [First a] -> First a #

Monoid (Last a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

mempty :: Last a #

mappend :: Last a -> Last a -> Last a #

mconcat :: [Last a] -> Last a #

Monoid a => Monoid (Down a)

Since: base-4.11.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

mempty :: Down a #

mappend :: Down a -> Down a -> Down a #

mconcat :: [Down a] -> Down a #

Monoid a => Monoid (Dual a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

mempty :: Dual a #

mappend :: Dual a -> Dual a -> Dual a #

mconcat :: [Dual a] -> Dual a #

Monoid (Endo a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

mempty :: Endo a #

mappend :: Endo a -> Endo a -> Endo a #

mconcat :: [Endo a] -> Endo a #

Num a => Monoid (Product a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

mempty :: Product a #

mappend :: Product a -> Product a -> Product a #

mconcat :: [Product a] -> Product a #

Num a => Monoid (Sum a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

mempty :: Sum a #

mappend :: Sum a -> Sum a -> Sum a #

mconcat :: [Sum a] -> Sum a #

(Generic a, Monoid (Rep a ())) => Monoid (Generically a)

Since: base-4.17.0.0

Instance details

Defined in GHC.Internal.Generics

Monoid p => Monoid (Par1 p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mempty :: Par1 p #

mappend :: Par1 p -> Par1 p -> Par1 p #

mconcat :: [Par1 p] -> Par1 p #

Monoid a => Monoid (IO a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

mempty :: IO a #

mappend :: IO a -> IO a -> IO a #

mconcat :: [IO a] -> IO a #

Semigroup a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S."

Since 4.11.0: constraint on inner a value generalised from Monoid to Semigroup.

Since: base-2.1

Instance details

Defined in GHC.Internal.Base

Methods

mempty :: Maybe a #

mappend :: Maybe a -> Maybe a -> Maybe a #

mconcat :: [Maybe a] -> Maybe a #

Monoid a => Monoid (Solo a)

Since: base-4.15

Instance details

Defined in GHC.Internal.Base

Methods

mempty :: Solo a #

mappend :: Solo a -> Solo a -> Solo a #

mconcat :: [Solo a] -> Solo a #

Monoid [a]

Since: base-2.1

Instance details

Defined in GHC.Internal.Base

Methods

mempty :: [a] #

mappend :: [a] -> [a] -> [a] #

mconcat :: [[a]] -> [a] #

Monoid a => Monoid (Op a b)

mempty @(Op a b) without newtypes is mempty @(b->a) = _ -> mempty.

mempty :: Op a b
mempty = Op _ -> mempty
Instance details

Defined in Data.Functor.Contravariant

Methods

mempty :: Op a b #

mappend :: Op a b -> Op a b -> Op a b #

mconcat :: [Op a b] -> Op a b #

Monoid (Proxy s)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

mempty :: Proxy s #

mappend :: Proxy s -> Proxy s -> Proxy s #

mconcat :: [Proxy s] -> Proxy s #

Monoid (U1 p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mempty :: U1 p #

mappend :: U1 p -> U1 p -> U1 p #

mconcat :: [U1 p] -> U1 p #

Monoid a => Monoid (ST s a)

Since: base-4.11.0.0

Instance details

Defined in GHC.Internal.ST

Methods

mempty :: ST s a #

mappend :: ST s a -> ST s a -> ST s a #

mconcat :: [ST s a] -> ST s a #

(Monoid a, Monoid b) => Monoid (a, b)

Since: base-2.1

Instance details

Defined in GHC.Internal.Base

Methods

mempty :: (a, b) #

mappend :: (a, b) -> (a, b) -> (a, b) #

mconcat :: [(a, b)] -> (a, b) #

Monoid b => Monoid (a -> b)

Since: base-2.1

Instance details

Defined in GHC.Internal.Base

Methods

mempty :: a -> b #

mappend :: (a -> b) -> (a -> b) -> a -> b #

mconcat :: [a -> b] -> a -> b #

Monoid a => Monoid (Const a b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

mempty :: Const a b #

mappend :: Const a b -> Const a b -> Const a b #

mconcat :: [Const a b] -> Const a b #

(Applicative f, Monoid a) => Monoid (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

mempty :: Ap f a #

mappend :: Ap f a -> Ap f a -> Ap f a #

mconcat :: [Ap f a] -> Ap f a #

Alternative f => Monoid (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

mempty :: Alt f a #

mappend :: Alt f a -> Alt f a -> Alt f a #

mconcat :: [Alt f a] -> Alt f a #

Monoid (f p) => Monoid (Rec1 f p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mempty :: Rec1 f p #

mappend :: Rec1 f p -> Rec1 f p -> Rec1 f p #

mconcat :: [Rec1 f p] -> Rec1 f p #

(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c)

Since: base-2.1

Instance details

Defined in GHC.Internal.Base

Methods

mempty :: (a, b, c) #

mappend :: (a, b, c) -> (a, b, c) -> (a, b, c) #

mconcat :: [(a, b, c)] -> (a, b, c) #

(Monoid (f a), Monoid (g a)) => Monoid (Product f g a)

Since: base-4.16.0.0

Instance details

Defined in Data.Functor.Product

Methods

mempty :: Product f g a #

mappend :: Product f g a -> Product f g a -> Product f g a #

mconcat :: [Product f g a] -> Product f g a #

(Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mempty :: (f :*: g) p #

mappend :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p #

mconcat :: [(f :*: g) p] -> (f :*: g) p #

Monoid c => Monoid (K1 i c p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mempty :: K1 i c p #

mappend :: K1 i c p -> K1 i c p -> K1 i c p #

mconcat :: [K1 i c p] -> K1 i c p #

(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d)

Since: base-2.1

Instance details

Defined in GHC.Internal.Base

Methods

mempty :: (a, b, c, d) #

mappend :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

mconcat :: [(a, b, c, d)] -> (a, b, c, d) #

Monoid (f (g a)) => Monoid (Compose f g a)

Since: base-4.16.0.0

Instance details

Defined in Data.Functor.Compose

Methods

mempty :: Compose f g a #

mappend :: Compose f g a -> Compose f g a -> Compose f g a #

mconcat :: [Compose f g a] -> Compose f g a #

Monoid (f (g p)) => Monoid ((f :.: g) p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mempty :: (f :.: g) p #

mappend :: (f :.: g) p -> (f :.: g) p -> (f :.: g) p #

mconcat :: [(f :.: g) p] -> (f :.: g) p #

Monoid (f p) => Monoid (M1 i c f p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mempty :: M1 i c f p #

mappend :: M1 i c f p -> M1 i c f p -> M1 i c f p #

mconcat :: [M1 i c f p] -> M1 i c f p #

(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e)

Since: base-2.1

Instance details

Defined in GHC.Internal.Base

Methods

mempty :: (a, b, c, d, e) #

mappend :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

mconcat :: [(a, b, c, d, e)] -> (a, b, c, d, e) #

class Bounded a where #

The Bounded class is used to name the upper and lower limits of a type. Ord is not a superclass of Bounded since types that are not totally ordered may also have upper and lower bounds.

The Bounded class may be derived for any enumeration type; minBound is the first constructor listed in the data declaration and maxBound is the last. Bounded may also be derived for single-constructor datatypes whose constituent types are in Bounded.

Methods

minBound :: a #

maxBound :: a #

Instances

Instances details
Bounded All

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

minBound :: All #

maxBound :: All #

Bounded Any

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

minBound :: Any #

maxBound :: Any #

Bounded IntPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Bounded WordPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Bounded Associativity

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Bounded DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Bounded SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Bounded SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Bounded Int16

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Bounded Int32

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Bounded Int64

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Bounded Int8

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Bounded CBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CBlkSize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CClockId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CDev 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CFsBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CFsFilCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CGid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

minBound :: CId #

maxBound :: CId #

Bounded CIno 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CKey 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CMode 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CNfds 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CNlink 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded COff 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CPid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CRLim 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CSocklen 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CSsize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CTcflag 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded CUid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Bounded Fd 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

minBound :: Fd #

maxBound :: Fd #

Bounded GeneralCategory

Since: base-2.1

Instance details

Defined in GHC.Internal.Unicode

Bounded Word16

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Bounded Word32

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Bounded Word64

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Bounded Word8

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Bounded Ordering

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Bounded ()

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: () #

maxBound :: () #

Bounded Bool

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Bounded Char

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Bounded Int

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: Int #

maxBound :: Int #

Bounded Levity

Since: base-4.16.0.0

Instance details

Defined in GHC.Internal.Enum

Bounded VecCount

Since: base-4.10.0.0

Instance details

Defined in GHC.Internal.Enum

Bounded VecElem

Since: base-4.10.0.0

Instance details

Defined in GHC.Internal.Enum

Bounded Word

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Bounded a => Bounded (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

minBound :: First a #

maxBound :: First a #

Bounded a => Bounded (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

minBound :: Last a #

maxBound :: Last a #

Bounded a => Bounded (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

minBound :: Max a #

maxBound :: Max a #

Bounded a => Bounded (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

minBound :: Min a #

maxBound :: Min a #

Bounded m => Bounded (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Bounded a => Bounded (And a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

minBound :: And a #

maxBound :: And a #

Bounded a => Bounded (Iff a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

minBound :: Iff a #

maxBound :: Iff a #

Bounded a => Bounded (Ior a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

minBound :: Ior a #

maxBound :: Ior a #

Bounded a => Bounded (Xor a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

minBound :: Xor a #

maxBound :: Xor a #

Bounded a => Bounded (Identity a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Bounded a => Bounded (Down a)

Swaps minBound and maxBound of the underlying type.

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

minBound :: Down a #

maxBound :: Down a #

Bounded a => Bounded (Dual a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

minBound :: Dual a #

maxBound :: Dual a #

Bounded a => Bounded (Product a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Bounded a => Bounded (Sum a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

minBound :: Sum a #

maxBound :: Sum a #

Bounded a => Bounded (Solo a) 
Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: Solo a #

maxBound :: Solo a #

Bounded (Proxy t)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

minBound :: Proxy t #

maxBound :: Proxy t #

(Bounded a, Bounded b) => Bounded (a, b)

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: (a, b) #

maxBound :: (a, b) #

Bounded a => Bounded (Const a b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

minBound :: Const a b #

maxBound :: Const a b #

(Applicative f, Bounded a) => Bounded (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

minBound :: Ap f a #

maxBound :: Ap f a #

a ~ b => Bounded (a :~: b)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Type.Equality

Methods

minBound :: a :~: b #

maxBound :: a :~: b #

(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c)

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: (a, b, c) #

maxBound :: (a, b, c) #

a ~~ b => Bounded (a :~~: b)

Since: base-4.10.0.0

Instance details

Defined in GHC.Internal.Data.Type.Equality

Methods

minBound :: a :~~: b #

maxBound :: a :~~: b #

(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d)

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: (a, b, c, d) #

maxBound :: (a, b, c, d) #

Bounded (f (g a)) => Bounded (Compose f g a)

Since: base-4.19.0.0

Instance details

Defined in Data.Functor.Compose

Methods

minBound :: Compose f g a #

maxBound :: Compose f g a #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e)

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: (a, b, c, d, e) #

maxBound :: (a, b, c, d, e) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f)

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: (a, b, c, d, e, f) #

maxBound :: (a, b, c, d, e, f) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g)

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: (a, b, c, d, e, f, g) #

maxBound :: (a, b, c, d, e, f, g) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h)

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h) #

maxBound :: (a, b, c, d, e, f, g, h) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i)

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i) #

maxBound :: (a, b, c, d, e, f, g, h, i) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j)

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j) #

maxBound :: (a, b, c, d, e, f, g, h, i, j) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k)

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l)

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

class Read a where #

Parsing of Strings, producing values.

Derived instances of Read make the following assumptions, which derived instances of Show obey:

  • If the constructor is defined to be an infix operator, then the derived Read instance will parse only infix applications of the constructor (not the prefix form).
  • Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
  • If the constructor is defined using record syntax, the derived Read will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration.
  • The derived Read instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Read in Haskell 2010 is equivalent to

instance (Read a) => Read (Tree a) where

        readsPrec d r =  readParen (d > app_prec)
                         (\r -> [(Leaf m,t) |
                                 ("Leaf",s) <- lex r,
                                 (m,t) <- readsPrec (app_prec+1) s]) r

                      ++ readParen (d > up_prec)
                         (\r -> [(u:^:v,w) |
                                 (u,s) <- readsPrec (up_prec+1) r,
                                 (":^:",t) <- lex s,
                                 (v,w) <- readsPrec (up_prec+1) t]) r

          where app_prec = 10
                up_prec = 5

Note that right-associativity of :^: is unused.

The derived instance in GHC is equivalent to

instance (Read a) => Read (Tree a) where

        readPrec = parens $ (prec app_prec $ do
                                 Ident "Leaf" <- lexP
                                 m <- step readPrec
                                 return (Leaf m))

                     +++ (prec up_prec $ do
                                 u <- step readPrec
                                 Symbol ":^:" <- lexP
                                 v <- step readPrec
                                 return (u :^: v))

          where app_prec = 10
                up_prec = 5

        readListPrec = readListPrecDefault

Why do both readsPrec and readPrec exist, and why does GHC opt to implement readPrec in derived Read instances instead of readsPrec? The reason is that readsPrec is based on the ReadS type, and although ReadS is mentioned in the Haskell 2010 Report, it is not a very efficient parser data structure.

readPrec, on the other hand, is based on a much more efficient ReadPrec datatype (a.k.a "new-style parsers"), but its definition relies on the use of the RankNTypes language extension. Therefore, readPrec (and its cousin, readListPrec) are marked as GHC-only. Nevertheless, it is recommended to use readPrec instead of readsPrec whenever possible for the efficiency improvements it brings.

As mentioned above, derived Read instances in GHC will implement readPrec instead of readsPrec. The default implementations of readsPrec (and its cousin, readList) will simply use readPrec under the hood. If you are writing a Read instance by hand, it is recommended to write it like so:

instance Read T where
  readPrec     = ...
  readListPrec = readListPrecDefault

Minimal complete definition

readsPrec | readPrec

Methods

readsPrec #

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> ReadS a 

attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

readList :: ReadS [a] #

The method readList is provided to allow the programmer to give a specialised way of parsing lists of values. For example, this is used by the predefined Read instance of the Char type, where values of type String are expected to use double quotes, rather than square brackets.

readPrec :: ReadPrec a #

Proposed replacement for readsPrec using new-style parsers (GHC only).

readListPrec :: ReadPrec [a] #

Proposed replacement for readList using new-style parsers (GHC only). The default definition uses readList. Instances that define readPrec should also define readListPrec as readListPrecDefault.

Instances

Instances details
Read Void

Reading a Void value is always a parse error, considering Void as a data type with no constructors.

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Read

Read All

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Read Any

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Read Version

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Version

Read IntPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Read WordPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Read Associativity

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Read DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Read Fixity

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Read SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Read SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Read SeekMode

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.Device

Read ExitCode 
Instance details

Defined in GHC.Internal.IO.Exception

Read BufferMode

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.Handle.Types

Read Newline

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.IO.Handle.Types

Read NewlineMode

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.IO.Handle.Types

Read IOMode

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.IOMode

Read Int16

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Read Int32

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Read Int64

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Read Int8

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Read CBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CBlkSize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CCc 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CClockId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CDev 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CFsBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CFsFilCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CGid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CIno 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CKey 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CMode 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CNfds 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CNlink 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read COff 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CPid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CRLim 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CSocklen 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CSpeed 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CSsize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CTcflag 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read CUid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read Fd 
Instance details

Defined in GHC.Internal.System.Posix.Types

Read Lexeme

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Read GeneralCategory

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Read Word16

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Read Word32

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Read Word64

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Read Word8

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Read Ordering

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Read Integer

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Read Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Read

Read ()

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS () #

readList :: ReadS [()] #

readPrec :: ReadPrec () #

readListPrec :: ReadPrec [()] #

Read Bool

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Read Char

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Read Double

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Read Float

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Read Int

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Read Word

Since: base-4.5.0.0

Instance details

Defined in GHC.Internal.Read

Read a => Read (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Read a => Read (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Read a => Read (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Read a => Read (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Read a => Read (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Read m => Read (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Read a => Read (NonEmpty a)

Since: base-4.11.0.0

Instance details

Defined in GHC.Internal.Read

Read a => Read (And a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Read a => Read (Iff a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Read a => Read (Ior a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Read a => Read (Xor a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Read a => Read (Identity a)

This instance would be equivalent to the derived instances of the Identity newtype if the runIdentity field were removed

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Read a => Read (First a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Monoid

Read a => Read (Last a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Monoid

Read a => Read (Down a)

This instance would be equivalent to the derived instances of the Down newtype if the getDown field were removed

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Read a => Read (Dual a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Read a => Read (Product a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Read a => Read (Sum a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Read a => Read (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Functor.ZipList

Read p => Read (Par1 p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

(Integral a, Read a) => Read (Ratio a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Read a => Read (Maybe a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Read a => Read (Solo a)

Since: base-4.15

Instance details

Defined in GHC.Internal.Read

Read a => Read [a]

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS [a] #

readList :: ReadS [[a]] #

readPrec :: ReadPrec [a] #

readListPrec :: ReadPrec [[a]] #

HasResolution a => Read (Fixed a)

Since: base-4.3.0.0

Instance details

Defined in Data.Fixed

(Read a, Read b) => Read (Arg a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

readsPrec :: Int -> ReadS (Arg a b) #

readList :: ReadS [Arg a b] #

readPrec :: ReadPrec (Arg a b) #

readListPrec :: ReadPrec [Arg a b] #

(Ix a, Read a, Read b) => Read (Array a b)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

(Read a, Read b) => Read (Either a b)

Since: base-3.0

Instance details

Defined in GHC.Internal.Data.Either

Read (Proxy t)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Read (U1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Read (V1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

(Read a, Read b) => Read (a, b)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS (a, b) #

readList :: ReadS [(a, b)] #

readPrec :: ReadPrec (a, b) #

readListPrec :: ReadPrec [(a, b)] #

Read a => Read (Const a b)

This instance would be equivalent to the derived instances of the Const newtype if the getConst field were removed

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Read (f a) => Read (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

readsPrec :: Int -> ReadS (Ap f a) #

readList :: ReadS [Ap f a] #

readPrec :: ReadPrec (Ap f a) #

readListPrec :: ReadPrec [Ap f a] #

Read (f a) => Read (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

readsPrec :: Int -> ReadS (Alt f a) #

readList :: ReadS [Alt f a] #

readPrec :: ReadPrec (Alt f a) #

readListPrec :: ReadPrec [Alt f a] #

a ~ b => Read (a :~: b)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Type.Equality

Methods

readsPrec :: Int -> ReadS (a :~: b) #

readList :: ReadS [a :~: b] #

readPrec :: ReadPrec (a :~: b) #

readListPrec :: ReadPrec [a :~: b] #

Read (f p) => Read (Rec1 f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

readsPrec :: Int -> ReadS (Rec1 f p) #

readList :: ReadS [Rec1 f p] #

readPrec :: ReadPrec (Rec1 f p) #

readListPrec :: ReadPrec [Rec1 f p] #

(Read a, Read b, Read c) => Read (a, b, c)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS (a, b, c) #

readList :: ReadS [(a, b, c)] #

readPrec :: ReadPrec (a, b, c) #

readListPrec :: ReadPrec [(a, b, c)] #

(Read (f a), Read (g a)) => Read (Product f g a)

Since: base-4.18.0.0

Instance details

Defined in Data.Functor.Product

Methods

readsPrec :: Int -> ReadS (Product f g a) #

readList :: ReadS [Product f g a] #

readPrec :: ReadPrec (Product f g a) #

readListPrec :: ReadPrec [Product f g a] #

(Read (f a), Read (g a)) => Read (Sum f g a)

Since: base-4.18.0.0

Instance details

Defined in Data.Functor.Sum

Methods

readsPrec :: Int -> ReadS (Sum f g a) #

readList :: ReadS [Sum f g a] #

readPrec :: ReadPrec (Sum f g a) #

readListPrec :: ReadPrec [Sum f g a] #

a ~~ b => Read (a :~~: b)

Since: base-4.10.0.0

Instance details

Defined in GHC.Internal.Data.Type.Equality

Methods

readsPrec :: Int -> ReadS (a :~~: b) #

readList :: ReadS [a :~~: b] #

readPrec :: ReadPrec (a :~~: b) #

readListPrec :: ReadPrec [a :~~: b] #

(Read (f p), Read (g p)) => Read ((f :*: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

readsPrec :: Int -> ReadS ((f :*: g) p) #

readList :: ReadS [(f :*: g) p] #

readPrec :: ReadPrec ((f :*: g) p) #

readListPrec :: ReadPrec [(f :*: g) p] #

(Read (f p), Read (g p)) => Read ((f :+: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

readsPrec :: Int -> ReadS ((f :+: g) p) #

readList :: ReadS [(f :+: g) p] #

readPrec :: ReadPrec ((f :+: g) p) #

readListPrec :: ReadPrec [(f :+: g) p] #

Read c => Read (K1 i c p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

readsPrec :: Int -> ReadS (K1 i c p) #

readList :: ReadS [K1 i c p] #

readPrec :: ReadPrec (K1 i c p) #

readListPrec :: ReadPrec [K1 i c p] #

(Read a, Read b, Read c, Read d) => Read (a, b, c, d)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d) #

readList :: ReadS [(a, b, c, d)] #

readPrec :: ReadPrec (a, b, c, d) #

readListPrec :: ReadPrec [(a, b, c, d)] #

Read (f (g a)) => Read (Compose f g a)

Since: base-4.18.0.0

Instance details

Defined in Data.Functor.Compose

Methods

readsPrec :: Int -> ReadS (Compose f g a) #

readList :: ReadS [Compose f g a] #

readPrec :: ReadPrec (Compose f g a) #

readListPrec :: ReadPrec [Compose f g a] #

Read (f (g p)) => Read ((f :.: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

readsPrec :: Int -> ReadS ((f :.: g) p) #

readList :: ReadS [(f :.: g) p] #

readPrec :: ReadPrec ((f :.: g) p) #

readListPrec :: ReadPrec [(f :.: g) p] #

Read (f p) => Read (M1 i c f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

readsPrec :: Int -> ReadS (M1 i c f p) #

readList :: ReadS [M1 i c f p] #

readPrec :: ReadPrec (M1 i c f p) #

readListPrec :: ReadPrec [M1 i c f p] #

(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e) #

readList :: ReadS [(a, b, c, d, e)] #

readPrec :: ReadPrec (a, b, c, d, e) #

readListPrec :: ReadPrec [(a, b, c, d, e)] #

(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f) #

readList :: ReadS [(a, b, c, d, e, f)] #

readPrec :: ReadPrec (a, b, c, d, e, f) #

readListPrec :: ReadPrec [(a, b, c, d, e, f)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g) #

readList :: ReadS [(a, b, c, d, e, f, g)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h) #

readList :: ReadS [(a, b, c, d, e, f, g, h)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l, m) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l, m)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l, m) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l, m)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] #

class (RealFrac a, Floating a) => RealFloat a where #

Efficient, machine-independent access to the components of a floating-point number.

Methods

floatRadix :: a -> Integer #

a constant function, returning the radix of the representation (often 2)

floatDigits :: a -> Int #

a constant function, returning the number of digits of floatRadix in the significand

floatRange :: a -> (Int, Int) #

a constant function, returning the lowest and highest values the exponent may assume

decodeFloat :: a -> (Integer, Int) #

The function decodeFloat applied to a real floating-point number returns the significand expressed as an Integer and an appropriately scaled exponent (an Int). If decodeFloat x yields (m,n), then x is equal in value to m*b^^n, where b is the floating-point radix, and furthermore, either m and n are both zero or else b^(d-1) <= abs m < b^d, where d is the value of floatDigits x. In particular, decodeFloat 0 = (0,0). If the type contains a negative zero, also decodeFloat (-0.0) = (0,0). The result of decodeFloat x is unspecified if either of isNaN x or isInfinite x is True.

encodeFloat :: Integer -> Int -> a #

encodeFloat performs the inverse of decodeFloat in the sense that for finite x with the exception of -0.0, uncurry encodeFloat (decodeFloat x) = x. encodeFloat m n is one of the two closest representable floating-point numbers to m*b^^n (or ±Infinity if overflow occurs); usually the closer, but if m contains too many bits, the result may be rounded in the wrong direction.

exponent :: a -> Int #

exponent corresponds to the second component of decodeFloat. exponent 0 = 0 and for finite nonzero x, exponent x = snd (decodeFloat x) + floatDigits x. If x is a finite floating-point number, it is equal in value to significand x * b ^^ exponent x, where b is the floating-point radix. The behaviour is unspecified on infinite or NaN values.

significand :: a -> a #

The first component of decodeFloat, scaled to lie in the open interval (-1,1), either 0.0 or of absolute value >= 1/b, where b is the floating-point radix. The behaviour is unspecified on infinite or NaN values.

scaleFloat :: Int -> a -> a #

multiplies a floating-point number by an integer power of the radix

isNaN :: a -> Bool #

True if the argument is an IEEE "not-a-number" (NaN) value

isInfinite :: a -> Bool #

True if the argument is an IEEE infinity or negative infinity

isDenormalized :: a -> Bool #

True if the argument is too small to be represented in normalized format

isNegativeZero :: a -> Bool #

True if the argument is an IEEE negative zero

isIEEE :: a -> Bool #

True if the argument is an IEEE floating point number

atan2 :: a -> a -> a #

a version of arctangent taking two real floating-point arguments. For real floating x and y, atan2 y x computes the angle (from the positive x-axis) of the vector from the origin to the point (x,y). atan2 y x returns a value in the range [-pi, pi]. It follows the Common Lisp semantics for the origin when signed zeroes are supported. atan2 y 1, with y in a type that is RealFloat, should return the same value as atan y. A default definition of atan2 is provided, but implementors can provide a more accurate implementation.

Instances

Instances details
RealFloat Double

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

RealFloat Float

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

RealFloat a => RealFloat (Identity a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

RealFloat a => RealFloat (Down a)

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

RealFloat a => RealFloat (Const a b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

floatRadix :: Const a b -> Integer #

floatDigits :: Const a b -> Int #

floatRange :: Const a b -> (Int, Int) #

decodeFloat :: Const a b -> (Integer, Int) #

encodeFloat :: Integer -> Int -> Const a b #

exponent :: Const a b -> Int #

significand :: Const a b -> Const a b #

scaleFloat :: Int -> Const a b -> Const a b #

isNaN :: Const a b -> Bool #

isInfinite :: Const a b -> Bool #

isDenormalized :: Const a b -> Bool #

isNegativeZero :: Const a b -> Bool #

isIEEE :: Const a b -> Bool #

atan2 :: Const a b -> Const a b -> Const a b #

RealFloat (f (g a)) => RealFloat (Compose f g a)

Since: base-4.20.0.0

Instance details

Defined in Data.Functor.Compose

Methods

floatRadix :: Compose f g a -> Integer #

floatDigits :: Compose f g a -> Int #

floatRange :: Compose f g a -> (Int, Int) #

decodeFloat :: Compose f g a -> (Integer, Int) #

encodeFloat :: Integer -> Int -> Compose f g a #

exponent :: Compose f g a -> Int #

significand :: Compose f g a -> Compose f g a #

scaleFloat :: Int -> Compose f g a -> Compose f g a #

isNaN :: Compose f g a -> Bool #

isInfinite :: Compose f g a -> Bool #

isDenormalized :: Compose f g a -> Bool #

isNegativeZero :: Compose f g a -> Bool #

isIEEE :: Compose f g a -> Bool #

atan2 :: Compose f g a -> Compose f g a -> Compose f g a #

class (Real a, Fractional a) => RealFrac a where #

Extracting components of fractions.

Minimal complete definition

properFraction

Methods

properFraction :: Integral b => a -> (b, a) #

The function properFraction takes a real fractional number x and returns a pair (n,f) such that x = n+f, and:

  • n is an integral number with the same sign as x; and
  • f is a fraction with the same type and sign as x, and with absolute value less than 1.

The default definitions of the ceiling, floor, truncate and round functions are in terms of properFraction.

truncate :: Integral b => a -> b #

truncate x returns the integer nearest x between zero and x

round :: Integral b => a -> b #

round x returns the nearest integer to x; the even integer if x is equidistant between two integers

ceiling :: Integral b => a -> b #

ceiling x returns the least integer not less than x

floor :: Integral b => a -> b #

floor x returns the greatest integer not greater than x

Instances

Instances details
RealFrac Double

Beware that results for non-finite arguments are garbage:

>>> [ f x | f <- [round, floor, ceiling], x <- [-1/0, 0/0, 1/0] ] :: [Int]
[0,0,0,0,0,0,0,0,0]
>>> map properFraction [-1/0, 0/0, 1/0] :: [(Int, Double)]
[(0,0.0),(0,0.0),(0,0.0)]

and get even more non-sensical if you ask for Integer instead of Int.

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Methods

properFraction :: Integral b => Double -> (b, Double) #

truncate :: Integral b => Double -> b #

round :: Integral b => Double -> b #

ceiling :: Integral b => Double -> b #

floor :: Integral b => Double -> b #

RealFrac Float

Beware that results for non-finite arguments are garbage:

>>> [ f x | f <- [round, floor, ceiling], x <- [-1/0, 0/0, 1/0 :: Float] ] :: [Int]
[0,0,0,0,0,0,0,0,0]
>>> map properFraction [-1/0, 0/0, 1/0] :: [(Int, Float)]
[(0,0.0),(0,0.0),(0,0.0)]

and get even more non-sensical if you ask for Integer instead of Int.

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Methods

properFraction :: Integral b => Float -> (b, Float) #

truncate :: Integral b => Float -> b #

round :: Integral b => Float -> b #

ceiling :: Integral b => Float -> b #

floor :: Integral b => Float -> b #

RealFrac a => RealFrac (Identity a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Methods

properFraction :: Integral b => Identity a -> (b, Identity a) #

truncate :: Integral b => Identity a -> b #

round :: Integral b => Identity a -> b #

ceiling :: Integral b => Identity a -> b #

floor :: Integral b => Identity a -> b #

RealFrac a => RealFrac (Down a)

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

properFraction :: Integral b => Down a -> (b, Down a) #

truncate :: Integral b => Down a -> b #

round :: Integral b => Down a -> b #

ceiling :: Integral b => Down a -> b #

floor :: Integral b => Down a -> b #

Integral a => RealFrac (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

properFraction :: Integral b => Ratio a -> (b, Ratio a) #

truncate :: Integral b => Ratio a -> b #

round :: Integral b => Ratio a -> b #

ceiling :: Integral b => Ratio a -> b #

floor :: Integral b => Ratio a -> b #

HasResolution a => RealFrac (Fixed a)

Since: base-2.1

Instance details

Defined in Data.Fixed

Methods

properFraction :: Integral b => Fixed a -> (b, Fixed a) #

truncate :: Integral b => Fixed a -> b #

round :: Integral b => Fixed a -> b #

ceiling :: Integral b => Fixed a -> b #

floor :: Integral b => Fixed a -> b #

RealFrac a => RealFrac (Const a b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

properFraction :: Integral b0 => Const a b -> (b0, Const a b) #

truncate :: Integral b0 => Const a b -> b0 #

round :: Integral b0 => Const a b -> b0 #

ceiling :: Integral b0 => Const a b -> b0 #

floor :: Integral b0 => Const a b -> b0 #

RealFrac (f (g a)) => RealFrac (Compose f g a)

Since: base-4.20.0.0

Instance details

Defined in Data.Functor.Compose

Methods

properFraction :: Integral b => Compose f g a -> (b, Compose f g a) #

truncate :: Integral b => Compose f g a -> b #

round :: Integral b => Compose f g a -> b #

ceiling :: Integral b => Compose f g a -> b #

floor :: Integral b => Compose f g a -> b #

class Show a where #

Conversion of values to readable Strings.

Derived instances of Show have the following properties, which are compatible with derived instances of Read:

  • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
  • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
  • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
  • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Show is equivalent to

instance (Show a) => Show (Tree a) where

       showsPrec d (Leaf m) = showParen (d > app_prec) $
            showString "Leaf " . showsPrec (app_prec+1) m
         where app_prec = 10

       showsPrec d (u :^: v) = showParen (d > up_prec) $
            showsPrec (up_prec+1) u .
            showString " :^: "      .
            showsPrec (up_prec+1) v
         where up_prec = 5

Note that right-associativity of :^: is ignored. For example,

  • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

Minimal complete definition

showsPrec | show

Methods

showsPrec #

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> a

the value to be converted to a String

-> ShowS 

Convert a value to a readable String.

showsPrec should satisfy the law

showsPrec d x r ++ s  ==  showsPrec d x (r ++ s)

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

show :: a -> String #

A specialised variant of showsPrec, using precedence context zero, and returning an ordinary String.

showList :: [a] -> ShowS #

The method showList is provided to allow the programmer to give a specialised way of showing lists of values. For example, this is used by the predefined Show instance of the Char type, where values of type String should be shown in double quotes, rather than between square brackets.

Instances

Instances details
Show ByteArray

Since: base-4.17.0.0

Instance details

Defined in Data.Array.Byte

Show Timeout

Since: base-4.0

Instance details

Defined in System.Timeout

Show Void

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> Void -> ShowS #

show :: Void -> String #

showList :: [Void] -> ShowS #

Show BlockReason

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Show ThreadId

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Show ThreadStatus

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Show NestedAtomically

Since: base-4.0

Instance details

Defined in GHC.Internal.Control.Exception.Base

Show NoMatchingContinuationPrompt

Since: base-4.18

Instance details

Defined in GHC.Internal.Control.Exception.Base

Show NoMethodError

Since: base-4.0

Instance details

Defined in GHC.Internal.Control.Exception.Base

Show NonTermination

Since: base-4.0

Instance details

Defined in GHC.Internal.Control.Exception.Base

Show PatternMatchFail

Since: base-4.0

Instance details

Defined in GHC.Internal.Control.Exception.Base

Show RecConError

Since: base-4.0

Instance details

Defined in GHC.Internal.Control.Exception.Base

Show RecSelError

Since: base-4.0

Instance details

Defined in GHC.Internal.Control.Exception.Base

Show RecUpdError

Since: base-4.0

Instance details

Defined in GHC.Internal.Control.Exception.Base

Show TypeError

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Control.Exception.Base

Show Constr

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Show ConstrRep

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Show DataRep

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Show DataType

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Show Fixity

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Show Dynamic

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Dynamic

Show All

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

showsPrec :: Int -> All -> ShowS #

show :: All -> String #

showList :: [All] -> ShowS #

Show Any

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

showsPrec :: Int -> Any -> ShowS #

show :: Any -> String #

showList :: [Any] -> ShowS #

Show SomeTypeRep

Since: base-4.10.0.0

Instance details

Defined in GHC.Internal.Data.Typeable.Internal

Show Version

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Version

Show ErrorCall

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.Exception

Show ArithException

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.Exception.Type

Show SomeException

Since: ghc-internal-3.0

Instance details

Defined in GHC.Internal.Exception.Type

Show IntPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Show WordPtr 
Instance details

Defined in GHC.Internal.Foreign.Ptr

Show Associativity

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Show DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Show Fixity

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Show SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Show SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Show MaskingState

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.IO

Show SeekMode

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.Device

Show CodingProgress

Since: base-4.4.0.0

Instance details

Defined in GHC.Internal.IO.Encoding.Types

Show TextEncoding

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.IO.Encoding.Types

Show AllocationLimitExceeded

Since: base-4.7.1.0

Instance details

Defined in GHC.Internal.IO.Exception

Show ArrayException

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.IO.Exception

Show AssertionFailed

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.IO.Exception

Show AsyncException

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.IO.Exception

Show BlockedIndefinitelyOnMVar

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.IO.Exception

Show BlockedIndefinitelyOnSTM

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.IO.Exception

Show CompactionFailed

Since: base-4.10.0.0

Instance details

Defined in GHC.Internal.IO.Exception

Show Deadlock

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.IO.Exception

Show ExitCode 
Instance details

Defined in GHC.Internal.IO.Exception

Show FixIOException

Since: base-4.11.0.0

Instance details

Defined in GHC.Internal.IO.Exception

Show IOErrorType

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.IO.Exception

Show IOException

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.IO.Exception

Show SomeAsyncException

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.IO.Exception

Show HandlePosn

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.IO.Handle

Show BufferMode

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.Handle.Types

Show Handle

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.IO.Handle.Types

Show HandleType

Since: base-4.1.0.0

Instance details

Defined in GHC.Internal.IO.Handle.Types

Show Newline

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.IO.Handle.Types

Show NewlineMode

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.IO.Handle.Types

Show IOMode

Since: base-4.2.0.0

Instance details

Defined in GHC.Internal.IO.IOMode

Show Int16

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Methods

showsPrec :: Int -> Int16 -> ShowS #

show :: Int16 -> String #

showList :: [Int16] -> ShowS #

Show Int32

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Methods

showsPrec :: Int -> Int32 -> ShowS #

show :: Int32 -> String #

showList :: [Int32] -> ShowS #

Show Int64

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Methods

showsPrec :: Int -> Int64 -> ShowS #

show :: Int64 -> String #

showList :: [Int64] -> ShowS #

Show Int8

Since: base-2.1

Instance details

Defined in GHC.Internal.Int

Methods

showsPrec :: Int -> Int8 -> ShowS #

show :: Int8 -> String #

showList :: [Int8] -> ShowS #

Show FractionalExponentBase 
Instance details

Defined in GHC.Internal.Real

Show CallStack

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Show

Show SrcLoc

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Show

Show CBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Show CBlkSize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Show CCc 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

showsPrec :: Int -> CCc -> ShowS #

show :: CCc -> String #

showList :: [CCc] -> ShowS #

Show CClockId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Show CDev 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

showsPrec :: Int -> CDev -> ShowS #

show :: CDev -> String #

showList :: [CDev] -> ShowS #

Show CFsBlkCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Show CFsFilCnt 
Instance details

Defined in GHC.Internal.System.Posix.Types

Show CGid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

showsPrec :: Int -> CGid -> ShowS #

show :: CGid -> String #

showList :: [CGid] -> ShowS #

Show CId 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

showsPrec :: Int -> CId -> ShowS #

show :: CId -> String #

showList :: [CId] -> ShowS #

Show CIno 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

showsPrec :: Int -> CIno -> ShowS #

show :: CIno -> String #

showList :: [CIno] -> ShowS #

Show CKey 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

showsPrec :: Int -> CKey -> ShowS #

show :: CKey -> String #

showList :: [CKey] -> ShowS #

Show CMode 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

showsPrec :: Int -> CMode -> ShowS #

show :: CMode -> String #

showList :: [CMode] -> ShowS #

Show CNfds 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

showsPrec :: Int -> CNfds -> ShowS #

show :: CNfds -> String #

showList :: [CNfds] -> ShowS #

Show CNlink 
Instance details

Defined in GHC.Internal.System.Posix.Types

Show COff 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

showsPrec :: Int -> COff -> ShowS #

show :: COff -> String #

showList :: [COff] -> ShowS #

Show CPid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

showsPrec :: Int -> CPid -> ShowS #

show :: CPid -> String #

showList :: [CPid] -> ShowS #

Show CRLim 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

showsPrec :: Int -> CRLim -> ShowS #

show :: CRLim -> String #

showList :: [CRLim] -> ShowS #

Show CSocklen 
Instance details

Defined in GHC.Internal.System.Posix.Types

Show CSpeed 
Instance details

Defined in GHC.Internal.System.Posix.Types

Show CSsize 
Instance details

Defined in GHC.Internal.System.Posix.Types

Show CTcflag 
Instance details

Defined in GHC.Internal.System.Posix.Types

Show CTimer 
Instance details

Defined in GHC.Internal.System.Posix.Types

Show CUid 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

showsPrec :: Int -> CUid -> ShowS #

show :: CUid -> String #

showList :: [CUid] -> ShowS #

Show Fd 
Instance details

Defined in GHC.Internal.System.Posix.Types

Methods

showsPrec :: Int -> Fd -> ShowS #

show :: Fd -> String #

showList :: [Fd] -> ShowS #

Show GeneralCategory

Since: base-2.1

Instance details

Defined in GHC.Internal.Unicode

Show Word16

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Show Word32

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Show Word64

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Show Word8

Since: base-2.1

Instance details

Defined in GHC.Internal.Word

Methods

showsPrec :: Int -> Word8 -> ShowS #

show :: Word8 -> String #

showList :: [Word8] -> ShowS #

Show KindRep 
Instance details

Defined in GHC.Internal.Show

Show Module

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Show

Show Ordering

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Show TrName

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Show

Show TyCon

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> TyCon -> ShowS #

show :: TyCon -> String #

showList :: [TyCon] -> ShowS #

Show TypeLitSort

Since: base-4.11.0.0

Instance details

Defined in GHC.Internal.Show

Show Integer

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Show Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Show

Show ()

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> () -> ShowS #

show :: () -> String #

showList :: [()] -> ShowS #

Show Bool

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> Bool -> ShowS #

show :: Bool -> String #

showList :: [Bool] -> ShowS #

Show Char

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> Char -> ShowS #

show :: Char -> String #

showList :: [Char] -> ShowS #

Show Double

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Show Float

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Methods

showsPrec :: Int -> Float -> ShowS #

show :: Float -> String #

showList :: [Float] -> ShowS #

Show Int

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> Int -> ShowS #

show :: Int -> String #

showList :: [Int] -> ShowS #

Show Levity

Since: base-4.15.0.0

Instance details

Defined in GHC.Internal.Show

Show RuntimeRep

Since: base-4.11.0.0

Instance details

Defined in GHC.Internal.Show

Show VecCount

Since: base-4.11.0.0

Instance details

Defined in GHC.Internal.Show

Show VecElem

Since: base-4.11.0.0

Instance details

Defined in GHC.Internal.Show

Show Word

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> Word -> ShowS #

show :: Word -> String #

showList :: [Word] -> ShowS #

Show a => Show (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

showsPrec :: Int -> Complex a -> ShowS #

show :: Complex a -> String #

showList :: [Complex a] -> ShowS #

Show a => Show (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

showsPrec :: Int -> First a -> ShowS #

show :: First a -> String #

showList :: [First a] -> ShowS #

Show a => Show (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

showsPrec :: Int -> Last a -> ShowS #

show :: Last a -> String #

showList :: [Last a] -> ShowS #

Show a => Show (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

showsPrec :: Int -> Max a -> ShowS #

show :: Max a -> String #

showList :: [Max a] -> ShowS #

Show a => Show (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

showsPrec :: Int -> Min a -> ShowS #

show :: Min a -> String #

showList :: [Min a] -> ShowS #

Show m => Show (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Show a => Show (NonEmpty a)

Since: base-4.11.0.0

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> NonEmpty a -> ShowS #

show :: NonEmpty a -> String #

showList :: [NonEmpty a] -> ShowS #

Show a => Show (And a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

showsPrec :: Int -> And a -> ShowS #

show :: And a -> String #

showList :: [And a] -> ShowS #

Show a => Show (Iff a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

showsPrec :: Int -> Iff a -> ShowS #

show :: Iff a -> String #

showList :: [Iff a] -> ShowS #

Show a => Show (Ior a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

showsPrec :: Int -> Ior a -> ShowS #

show :: Ior a -> String #

showList :: [Ior a] -> ShowS #

Show a => Show (Xor a)

Since: base-4.16

Instance details

Defined in GHC.Internal.Data.Bits

Methods

showsPrec :: Int -> Xor a -> ShowS #

show :: Xor a -> String #

showList :: [Xor a] -> ShowS #

Show a => Show (Identity a)

This instance would be equivalent to the derived instances of the Identity newtype if the runIdentity field were removed

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Methods

showsPrec :: Int -> Identity a -> ShowS #

show :: Identity a -> String #

showList :: [Identity a] -> ShowS #

Show a => Show (First a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

showsPrec :: Int -> First a -> ShowS #

show :: First a -> String #

showList :: [First a] -> ShowS #

Show a => Show (Last a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

showsPrec :: Int -> Last a -> ShowS #

show :: Last a -> String #

showList :: [Last a] -> ShowS #

Show a => Show (Down a)

This instance would be equivalent to the derived instances of the Down newtype if the getDown field were removed

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

showsPrec :: Int -> Down a -> ShowS #

show :: Down a -> String #

showList :: [Down a] -> ShowS #

Show a => Show (Dual a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

showsPrec :: Int -> Dual a -> ShowS #

show :: Dual a -> String #

showList :: [Dual a] -> ShowS #

Show a => Show (Product a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

showsPrec :: Int -> Product a -> ShowS #

show :: Product a -> String #

showList :: [Product a] -> ShowS #

Show a => Show (Sum a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

showsPrec :: Int -> Sum a -> ShowS #

show :: Sum a -> String #

showList :: [Sum a] -> ShowS #

Show a => Show (ExceptionWithContext a) 
Instance details

Defined in GHC.Internal.Exception.Type

Show e => Show (NoBacktrace e) 
Instance details

Defined in GHC.Internal.Exception.Type

Show (ForeignPtr a)

Since: base-2.1

Instance details

Defined in GHC.Internal.ForeignPtr

Show a => Show (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Functor.ZipList

Methods

showsPrec :: Int -> ZipList a -> ShowS #

show :: ZipList a -> String #

showList :: [ZipList a] -> ShowS #

Show p => Show (Par1 p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> Par1 p -> ShowS #

show :: Par1 p -> String #

showList :: [Par1 p] -> ShowS #

Show (FunPtr a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Ptr

Methods

showsPrec :: Int -> FunPtr a -> ShowS #

show :: FunPtr a -> String #

showList :: [FunPtr a] -> ShowS #

Show (Ptr a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Ptr

Methods

showsPrec :: Int -> Ptr a -> ShowS #

show :: Ptr a -> String #

showList :: [Ptr a] -> ShowS #

Show a => Show (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

showsPrec :: Int -> Ratio a -> ShowS #

show :: Ratio a -> String #

showList :: [Ratio a] -> ShowS #

Show a => Show (Maybe a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> Maybe a -> ShowS #

show :: Maybe a -> String #

showList :: [Maybe a] -> ShowS #

Show a => Show (Solo a)

Since: base-4.15

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> Solo a -> ShowS #

show :: Solo a -> String #

showList :: [Solo a] -> ShowS #

Show a => Show [a]

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> [a] -> ShowS #

show :: [a] -> String #

showList :: [[a]] -> ShowS #

HasResolution a => Show (Fixed a)

Since: base-2.1

Instance details

Defined in Data.Fixed

Methods

showsPrec :: Int -> Fixed a -> ShowS #

show :: Fixed a -> String #

showList :: [Fixed a] -> ShowS #

(Show a, Show b) => Show (Arg a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

showsPrec :: Int -> Arg a b -> ShowS #

show :: Arg a b -> String #

showList :: [Arg a b] -> ShowS #

(Show a, Show b) => Show (Either a b)

Since: base-3.0

Instance details

Defined in GHC.Internal.Data.Either

Methods

showsPrec :: Int -> Either a b -> ShowS #

show :: Either a b -> String #

showList :: [Either a b] -> ShowS #

Show (Proxy s)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

showsPrec :: Int -> Proxy s -> ShowS #

show :: Proxy s -> String #

showList :: [Proxy s] -> ShowS #

Show (TypeRep a) 
Instance details

Defined in GHC.Internal.Data.Typeable.Internal

Methods

showsPrec :: Int -> TypeRep a -> ShowS #

show :: TypeRep a -> String #

showList :: [TypeRep a] -> ShowS #

Show (U1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> U1 p -> ShowS #

show :: U1 p -> String #

showList :: [U1 p] -> ShowS #

Show (V1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> V1 p -> ShowS #

show :: V1 p -> String #

showList :: [V1 p] -> ShowS #

Show (ST s a)

Since: base-2.1

Instance details

Defined in GHC.Internal.ST

Methods

showsPrec :: Int -> ST s a -> ShowS #

show :: ST s a -> String #

showList :: [ST s a] -> ShowS #

(Show a, Show b) => Show (a, b)

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> (a, b) -> ShowS #

show :: (a, b) -> String #

showList :: [(a, b)] -> ShowS #

Show a => Show (Const a b)

This instance would be equivalent to the derived instances of the Const newtype if the getConst field were removed

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

showsPrec :: Int -> Const a b -> ShowS #

show :: Const a b -> String #

showList :: [Const a b] -> ShowS #

Show (f a) => Show (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

showsPrec :: Int -> Ap f a -> ShowS #

show :: Ap f a -> String #

showList :: [Ap f a] -> ShowS #

Show (f a) => Show (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

showsPrec :: Int -> Alt f a -> ShowS #

show :: Alt f a -> String #

showList :: [Alt f a] -> ShowS #

Show (a :~: b)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Type.Equality

Methods

showsPrec :: Int -> (a :~: b) -> ShowS #

show :: (a :~: b) -> String #

showList :: [a :~: b] -> ShowS #

Show (f p) => Show (Rec1 f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> Rec1 f p -> ShowS #

show :: Rec1 f p -> String #

showList :: [Rec1 f p] -> ShowS #

Show (URec Char p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> URec Char p -> ShowS #

show :: URec Char p -> String #

showList :: [URec Char p] -> ShowS #

Show (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> URec Double p -> ShowS #

show :: URec Double p -> String #

showList :: [URec Double p] -> ShowS #

Show (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> URec Float p -> ShowS #

show :: URec Float p -> String #

showList :: [URec Float p] -> ShowS #

Show (URec Int p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> URec Int p -> ShowS #

show :: URec Int p -> String #

showList :: [URec Int p] -> ShowS #

Show (URec Word p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> URec Word p -> ShowS #

show :: URec Word p -> String #

showList :: [URec Word p] -> ShowS #

(Show a, Show b, Show c) => Show (a, b, c)

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> (a, b, c) -> ShowS #

show :: (a, b, c) -> String #

showList :: [(a, b, c)] -> ShowS #

(Show (f a), Show (g a)) => Show (Product f g a)

Since: base-4.18.0.0

Instance details

Defined in Data.Functor.Product

Methods

showsPrec :: Int -> Product f g a -> ShowS #

show :: Product f g a -> String #

showList :: [Product f g a] -> ShowS #

(Show (f a), Show (g a)) => Show (Sum f g a)

Since: base-4.18.0.0

Instance details

Defined in Data.Functor.Sum

Methods

showsPrec :: Int -> Sum f g a -> ShowS #

show :: Sum f g a -> String #

showList :: [Sum f g a] -> ShowS #

Show (a :~~: b)

Since: base-4.10.0.0

Instance details

Defined in GHC.Internal.Data.Type.Equality

Methods

showsPrec :: Int -> (a :~~: b) -> ShowS #

show :: (a :~~: b) -> String #

showList :: [a :~~: b] -> ShowS #

(Show (f p), Show (g p)) => Show ((f :*: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> (f :*: g) p -> ShowS #

show :: (f :*: g) p -> String #

showList :: [(f :*: g) p] -> ShowS #

(Show (f p), Show (g p)) => Show ((f :+: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> (f :+: g) p -> ShowS #

show :: (f :+: g) p -> String #

showList :: [(f :+: g) p] -> ShowS #

Show c => Show (K1 i c p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> K1 i c p -> ShowS #

show :: K1 i c p -> String #

showList :: [K1 i c p] -> ShowS #

(Show a, Show b, Show c, Show d) => Show (a, b, c, d)

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> (a, b, c, d) -> ShowS #

show :: (a, b, c, d) -> String #

showList :: [(a, b, c, d)] -> ShowS #

Show (f (g a)) => Show (Compose f g a)

Since: base-4.18.0.0

Instance details

Defined in Data.Functor.Compose

Methods

showsPrec :: Int -> Compose f g a -> ShowS #

show :: Compose f g a -> String #

showList :: [Compose f g a] -> ShowS #

Show (f (g p)) => Show ((f :.: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> (f :.: g) p -> ShowS #

show :: (f :.: g) p -> String #

showList :: [(f :.: g) p] -> ShowS #

Show (f p) => Show (M1 i c f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> M1 i c f p -> ShowS #

show :: M1 i c f p -> String #

showList :: [M1 i c f p] -> ShowS #

(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e)

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> (a, b, c, d, e) -> ShowS #

show :: (a, b, c, d, e) -> String #

showList :: [(a, b, c, d, e)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f)

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f) -> ShowS #

show :: (a, b, c, d, e, f) -> String #

showList :: [(a, b, c, d, e, f)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g)

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g) -> ShowS #

show :: (a, b, c, d, e, f, g) -> String #

showList :: [(a, b, c, d, e, f, g)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h)

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h) -> ShowS #

show :: (a, b, c, d, e, f, g, h) -> String #

showList :: [(a, b, c, d, e, f, g, h)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i)

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i) -> String #

showList :: [(a, b, c, d, e, f, g, h, i)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j)

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k)

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l)

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] -> ShowS #

class Generic a #

Representable types of kind *. This class is derivable in GHC with the DeriveGeneric flag on.

A Generic instance must satisfy the following laws:

from . toid
to . fromid

Minimal complete definition

from, to

Instances

Instances details
Generic Void 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep Void

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep Void = D1 ('MetaData "Void" "GHC.Internal.Base" "ghc-internal" 'False) (V1 :: Type -> Type)

Methods

from :: Void -> Rep Void x #

to :: Rep Void x -> Void #

Generic All 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep All

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep All = D1 ('MetaData "All" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "All" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAll") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)))

Methods

from :: All -> Rep All x #

to :: Rep All x -> All #

Generic Any 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep Any

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep Any = D1 ('MetaData "Any" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Any" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAny") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)))

Methods

from :: Any -> Rep Any x #

to :: Rep Any x -> Any #

Generic Version 
Instance details

Defined in GHC.Internal.Data.Version

Associated Types

type Rep Version

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Version

type Rep Version = D1 ('MetaData "Version" "GHC.Internal.Data.Version" "ghc-internal" 'False) (C1 ('MetaCons "Version" 'PrefixI 'True) (S1 ('MetaSel ('Just "versionBranch") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Int]) :*: S1 ('MetaSel ('Just "versionTags") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [String])))

Methods

from :: Version -> Rep Version x #

to :: Rep Version x -> Version #

Generic Fingerprint 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep Fingerprint

Since: base-4.15.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep Fingerprint = D1 ('MetaData "Fingerprint" "GHC.Internal.Fingerprint.Type" "ghc-internal" 'False) (C1 ('MetaCons "Fingerprint" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'SourceUnpack 'SourceStrict 'DecidedUnpack) (Rec0 Word64) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'SourceUnpack 'SourceStrict 'DecidedUnpack) (Rec0 Word64)))
Generic Associativity 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep Associativity

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep Associativity = D1 ('MetaData "Associativity" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "LeftAssociative" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "RightAssociative" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NotAssociative" 'PrefixI 'False) (U1 :: Type -> Type)))
Generic DecidedStrictness 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep DecidedStrictness = D1 ('MetaData "DecidedStrictness" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "DecidedLazy" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "DecidedStrict" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DecidedUnpack" 'PrefixI 'False) (U1 :: Type -> Type)))
Generic Fixity 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep Fixity

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from :: Fixity -> Rep Fixity x #

to :: Rep Fixity x -> Fixity #

Generic SourceStrictness 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep SourceStrictness = D1 ('MetaData "SourceStrictness" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "NoSourceStrictness" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "SourceLazy" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "SourceStrict" 'PrefixI 'False) (U1 :: Type -> Type)))
Generic SourceUnpackedness 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep SourceUnpackedness = D1 ('MetaData "SourceUnpackedness" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "NoSourceUnpackedness" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "SourceNoUnpack" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "SourceUnpack" 'PrefixI 'False) (U1 :: Type -> Type)))
Generic ExitCode 
Instance details

Defined in GHC.Internal.IO.Exception

Associated Types

type Rep ExitCode 
Instance details

Defined in GHC.Internal.IO.Exception

type Rep ExitCode = D1 ('MetaData "ExitCode" "GHC.Internal.IO.Exception" "ghc-internal" 'False) (C1 ('MetaCons "ExitSuccess" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExitFailure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int)))

Methods

from :: ExitCode -> Rep ExitCode x #

to :: Rep ExitCode x -> ExitCode #

Generic SrcLoc 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep SrcLoc

Since: base-4.15.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from :: SrcLoc -> Rep SrcLoc x #

to :: Rep SrcLoc x -> SrcLoc #

Generic GeneralCategory 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep GeneralCategory

Since: base-4.15.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep GeneralCategory = D1 ('MetaData "GeneralCategory" "GHC.Internal.Unicode" "ghc-internal" 'False) ((((C1 ('MetaCons "UppercaseLetter" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "LowercaseLetter" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TitlecaseLetter" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "ModifierLetter" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OtherLetter" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "NonSpacingMark" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "SpacingCombiningMark" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "EnclosingMark" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DecimalNumber" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "LetterNumber" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OtherNumber" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "ConnectorPunctuation" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DashPunctuation" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "OpenPunctuation" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ClosePunctuation" 'PrefixI 'False) (U1 :: Type -> Type))))) :+: (((C1 ('MetaCons "InitialQuote" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "FinalQuote" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OtherPunctuation" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "MathSymbol" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "CurrencySymbol" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "ModifierSymbol" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OtherSymbol" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "Space" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "LineSeparator" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "ParagraphSeparator" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Control" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "Format" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Surrogate" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "PrivateUse" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NotAssigned" 'PrefixI 'False) (U1 :: Type -> Type))))))
Generic Ordering 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep Ordering

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep Ordering = D1 ('MetaData "Ordering" "GHC.Types" "ghc-prim" 'False) (C1 ('MetaCons "LT" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "EQ" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "GT" 'PrefixI 'False) (U1 :: Type -> Type)))

Methods

from :: Ordering -> Rep Ordering x #

to :: Rep Ordering x -> Ordering #

Generic () 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep ()

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep () = D1 ('MetaData "Unit" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "()" 'PrefixI 'False) (U1 :: Type -> Type))

Methods

from :: () -> Rep () x #

to :: Rep () x -> () #

Generic Bool 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep Bool

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep Bool = D1 ('MetaData "Bool" "GHC.Types" "ghc-prim" 'False) (C1 ('MetaCons "False" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "True" 'PrefixI 'False) (U1 :: Type -> Type))

Methods

from :: Bool -> Rep Bool x #

to :: Rep Bool x -> Bool #

Generic (Complex a) 
Instance details

Defined in Data.Complex

Associated Types

type Rep (Complex a)

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

from :: Complex a -> Rep (Complex a) x #

to :: Rep (Complex a) x -> Complex a #

Generic (First a) 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep (First a) = D1 ('MetaData "First" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Generic (Last a) 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep (Last a) = D1 ('MetaData "Last" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Generic (Max a) 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep (Max a) = D1 ('MetaData "Max" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Max" 'PrefixI 'True) (S1 ('MetaSel ('Just "getMax") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Max a -> Rep (Max a) x #

to :: Rep (Max a) x -> Max a #

Generic (Min a) 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep (Min a) = D1 ('MetaData "Min" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Min" 'PrefixI 'True) (S1 ('MetaSel ('Just "getMin") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Min a -> Rep (Min a) x #

to :: Rep (Min a) x -> Min a #

Generic (WrappedMonoid m) 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep (WrappedMonoid m) = D1 ('MetaData "WrappedMonoid" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "WrapMonoid" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapMonoid") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m)))
Generic (NonEmpty a) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (NonEmpty a)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from :: NonEmpty a -> Rep (NonEmpty a) x #

to :: Rep (NonEmpty a) x -> NonEmpty a #

Generic (Identity a) 
Instance details

Defined in GHC.Internal.Data.Functor.Identity

Associated Types

type Rep (Identity a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

type Rep (Identity a) = D1 ('MetaData "Identity" "GHC.Internal.Data.Functor.Identity" "ghc-internal" 'True) (C1 ('MetaCons "Identity" 'PrefixI 'True) (S1 ('MetaSel ('Just "runIdentity") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Identity a -> Rep (Identity a) x #

to :: Rep (Identity a) x -> Identity a #

Generic (First a) 
Instance details

Defined in GHC.Internal.Data.Monoid

Associated Types

type Rep (First a)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep (First a) = D1 ('MetaData "First" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe a))))

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Generic (Last a) 
Instance details

Defined in GHC.Internal.Data.Monoid

Associated Types

type Rep (Last a)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep (Last a) = D1 ('MetaData "Last" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe a))))

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Generic (Down a) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (Down a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (Down a) = D1 ('MetaData "Down" "GHC.Internal.Data.Ord" "ghc-internal" 'True) (C1 ('MetaCons "Down" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDown") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Down a -> Rep (Down a) x #

to :: Rep (Down a) x -> Down a #

Generic (Dual a) 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep (Dual a)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep (Dual a) = D1 ('MetaData "Dual" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Dual" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDual") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Dual a -> Rep (Dual a) x #

to :: Rep (Dual a) x -> Dual a #

Generic (Endo a) 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep (Endo a)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep (Endo a) = D1 ('MetaData "Endo" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Endo" 'PrefixI 'True) (S1 ('MetaSel ('Just "appEndo") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (a -> a))))

Methods

from :: Endo a -> Rep (Endo a) x #

to :: Rep (Endo a) x -> Endo a #

Generic (Product a) 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep (Product a)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep (Product a) = D1 ('MetaData "Product" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Product" 'PrefixI 'True) (S1 ('MetaSel ('Just "getProduct") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Product a -> Rep (Product a) x #

to :: Rep (Product a) x -> Product a #

Generic (Sum a) 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep (Sum a)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep (Sum a) = D1 ('MetaData "Sum" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Sum" 'PrefixI 'True) (S1 ('MetaSel ('Just "getSum") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Sum a -> Rep (Sum a) x #

to :: Rep (Sum a) x -> Sum a #

Generic (ZipList a) 
Instance details

Defined in GHC.Internal.Functor.ZipList

Associated Types

type Rep (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Functor.ZipList

type Rep (ZipList a) = D1 ('MetaData "ZipList" "GHC.Internal.Functor.ZipList" "ghc-internal" 'True) (C1 ('MetaCons "ZipList" 'PrefixI 'True) (S1 ('MetaSel ('Just "getZipList") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [a])))

Methods

from :: ZipList a -> Rep (ZipList a) x #

to :: Rep (ZipList a) x -> ZipList a #

Generic (Par1 p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (Par1 p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (Par1 p) = D1 ('MetaData "Par1" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "Par1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unPar1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 p)))

Methods

from :: Par1 p -> Rep (Par1 p) x #

to :: Rep (Par1 p) x -> Par1 p #

Generic (Maybe a) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (Maybe a)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (Maybe a) = D1 ('MetaData "Maybe" "GHC.Internal.Maybe" "ghc-internal" 'False) (C1 ('MetaCons "Nothing" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Just" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Maybe a -> Rep (Maybe a) x #

to :: Rep (Maybe a) x -> Maybe a #

Generic (Solo a) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (Solo a)

Since: base-4.15

Instance details

Defined in GHC.Internal.Generics

type Rep (Solo a) = D1 ('MetaData "Solo" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "MkSolo" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Solo a -> Rep (Solo a) x #

to :: Rep (Solo a) x -> Solo a #

Generic [a] 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep [a]

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from :: [a] -> Rep [a] x #

to :: Rep [a] x -> [a] #

Generic (WrappedMonad m a) 
Instance details

Defined in Control.Applicative

Associated Types

type Rep (WrappedMonad m a)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

type Rep (WrappedMonad m a) = D1 ('MetaData "WrappedMonad" "Control.Applicative" "base" 'True) (C1 ('MetaCons "WrapMonad" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapMonad") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (m a))))

Methods

from :: WrappedMonad m a -> Rep (WrappedMonad m a) x #

to :: Rep (WrappedMonad m a) x -> WrappedMonad m a #

Generic (Arg a b) 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep (Arg a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

from :: Arg a b -> Rep (Arg a b) x #

to :: Rep (Arg a b) x -> Arg a b #

Generic (Either a b) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (Either a b)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (Either a b) = D1 ('MetaData "Either" "GHC.Internal.Data.Either" "ghc-internal" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b)))

Methods

from :: Either a b -> Rep (Either a b) x #

to :: Rep (Either a b) x -> Either a b #

Generic (Proxy t) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (Proxy t)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (Proxy t) = D1 ('MetaData "Proxy" "GHC.Internal.Data.Proxy" "ghc-internal" 'False) (C1 ('MetaCons "Proxy" 'PrefixI 'False) (U1 :: Type -> Type))

Methods

from :: Proxy t -> Rep (Proxy t) x #

to :: Rep (Proxy t) x -> Proxy t #

Generic (U1 p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (U1 p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (U1 p) = D1 ('MetaData "U1" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "U1" 'PrefixI 'False) (U1 :: Type -> Type))

Methods

from :: U1 p -> Rep (U1 p) x #

to :: Rep (U1 p) x -> U1 p #

Generic (V1 p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (V1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (V1 p) = D1 ('MetaData "V1" "GHC.Internal.Generics" "ghc-internal" 'False) (V1 :: Type -> Type)

Methods

from :: V1 p -> Rep (V1 p) x #

to :: Rep (V1 p) x -> V1 p #

Generic (a, b) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (a, b)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from :: (a, b) -> Rep (a, b) x #

to :: Rep (a, b) x -> (a, b) #

Generic (WrappedArrow a b c) 
Instance details

Defined in Control.Applicative

Associated Types

type Rep (WrappedArrow a b c)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

type Rep (WrappedArrow a b c) = D1 ('MetaData "WrappedArrow" "Control.Applicative" "base" 'True) (C1 ('MetaCons "WrapArrow" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapArrow") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (a b c))))

Methods

from :: WrappedArrow a b c -> Rep (WrappedArrow a b c) x #

to :: Rep (WrappedArrow a b c) x -> WrappedArrow a b c #

Generic (Kleisli m a b) 
Instance details

Defined in GHC.Internal.Control.Arrow

Associated Types

type Rep (Kleisli m a b)

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

type Rep (Kleisli m a b) = D1 ('MetaData "Kleisli" "GHC.Internal.Control.Arrow" "ghc-internal" 'True) (C1 ('MetaCons "Kleisli" 'PrefixI 'True) (S1 ('MetaSel ('Just "runKleisli") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (a -> m b))))

Methods

from :: Kleisli m a b -> Rep (Kleisli m a b) x #

to :: Rep (Kleisli m a b) x -> Kleisli m a b #

Generic (Const a b) 
Instance details

Defined in GHC.Internal.Data.Functor.Const

Associated Types

type Rep (Const a b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

type Rep (Const a b) = D1 ('MetaData "Const" "GHC.Internal.Data.Functor.Const" "ghc-internal" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Const a b -> Rep (Const a b) x #

to :: Rep (Const a b) x -> Const a b #

Generic (Ap f a) 
Instance details

Defined in GHC.Internal.Data.Monoid

Associated Types

type Rep (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep (Ap f a) = D1 ('MetaData "Ap" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "Ap" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAp") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a))))

Methods

from :: Ap f a -> Rep (Ap f a) x #

to :: Rep (Ap f a) x -> Ap f a #

Generic (Alt f a) 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep (Alt f a) = D1 ('MetaData "Alt" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Alt" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAlt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a))))

Methods

from :: Alt f a -> Rep (Alt f a) x #

to :: Rep (Alt f a) x -> Alt f a #

Generic (Rec1 f p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (Rec1 f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (Rec1 f p) = D1 ('MetaData "Rec1" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "Rec1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unRec1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f p))))

Methods

from :: Rec1 f p -> Rep (Rec1 f p) x #

to :: Rep (Rec1 f p) x -> Rec1 f p #

Generic (URec (Ptr ()) p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec (Ptr ()) p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec (Ptr ()) p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UAddr" 'PrefixI 'True) (S1 ('MetaSel ('Just "uAddr#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UAddr :: Type -> Type)))

Methods

from :: URec (Ptr ()) p -> Rep (URec (Ptr ()) p) x #

to :: Rep (URec (Ptr ()) p) x -> URec (Ptr ()) p #

Generic (URec Char p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec Char p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Char p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UChar" 'PrefixI 'True) (S1 ('MetaSel ('Just "uChar#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UChar :: Type -> Type)))

Methods

from :: URec Char p -> Rep (URec Char p) x #

to :: Rep (URec Char p) x -> URec Char p #

Generic (URec Double p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Double p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: Type -> Type)))

Methods

from :: URec Double p -> Rep (URec Double p) x #

to :: Rep (URec Double p) x -> URec Double p #

Generic (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

type Rep (URec Float p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: Type -> Type)))

Methods

from :: URec Float p -> Rep (URec Float p) x #

to :: Rep (URec Float p) x -> URec Float p #

Generic (URec Int p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec Int p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Int p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UInt" 'PrefixI 'True) (S1 ('MetaSel ('Just "uInt#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UInt :: Type -> Type)))

Methods

from :: URec Int p -> Rep (URec Int p) x #

to :: Rep (URec Int p) x -> URec Int p #

Generic (URec Word p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec Word p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Word p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UWord" 'PrefixI 'True) (S1 ('MetaSel ('Just "uWord#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UWord :: Type -> Type)))

Methods

from :: URec Word p -> Rep (URec Word p) x #

to :: Rep (URec Word p) x -> URec Word p #

Generic (a, b, c) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (a, b, c)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from :: (a, b, c) -> Rep (a, b, c) x #

to :: Rep (a, b, c) x -> (a, b, c) #

Generic (Product f g a) 
Instance details

Defined in Data.Functor.Product

Associated Types

type Rep (Product f g a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

type Rep (Product f g a) = D1 ('MetaData "Product" "Data.Functor.Product" "base" 'False) (C1 ('MetaCons "Pair" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a)) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (g a))))

Methods

from :: Product f g a -> Rep (Product f g a) x #

to :: Rep (Product f g a) x -> Product f g a #

Generic (Sum f g a) 
Instance details

Defined in Data.Functor.Sum

Associated Types

type Rep (Sum f g a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

from :: Sum f g a -> Rep (Sum f g a) x #

to :: Rep (Sum f g a) x -> Sum f g a #

Generic ((f :*: g) p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep ((f :*: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep ((f :*: g) p) = D1 ('MetaData ":*:" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons ":*:" ('InfixI 'RightAssociative 6) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f p)) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (g p))))

Methods

from :: (f :*: g) p -> Rep ((f :*: g) p) x #

to :: Rep ((f :*: g) p) x -> (f :*: g) p #

Generic ((f :+: g) p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep ((f :+: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep ((f :+: g) p) = D1 ('MetaData ":+:" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "L1" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f p))) :+: C1 ('MetaCons "R1" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (g p))))

Methods

from :: (f :+: g) p -> Rep ((f :+: g) p) x #

to :: Rep ((f :+: g) p) x -> (f :+: g) p #

Generic (K1 i c p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (K1 i c p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (K1 i c p) = D1 ('MetaData "K1" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "K1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unK1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c)))

Methods

from :: K1 i c p -> Rep (K1 i c p) x #

to :: Rep (K1 i c p) x -> K1 i c p #

Generic (a, b, c, d) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (a, b, c, d)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from :: (a, b, c, d) -> Rep (a, b, c, d) x #

to :: Rep (a, b, c, d) x -> (a, b, c, d) #

Generic (Compose f g a) 
Instance details

Defined in Data.Functor.Compose

Associated Types

type Rep (Compose f g a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

type Rep (Compose f g a) = D1 ('MetaData "Compose" "Data.Functor.Compose" "base" 'True) (C1 ('MetaCons "Compose" 'PrefixI 'True) (S1 ('MetaSel ('Just "getCompose") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f (g a)))))

Methods

from :: Compose f g a -> Rep (Compose f g a) x #

to :: Rep (Compose f g a) x -> Compose f g a #

Generic ((f :.: g) p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep ((f :.: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep ((f :.: g) p) = D1 ('MetaData ":.:" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "Comp1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unComp1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f (g p)))))

Methods

from :: (f :.: g) p -> Rep ((f :.: g) p) x #

to :: Rep ((f :.: g) p) x -> (f :.: g) p #

Generic (M1 i c f p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (M1 i c f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (M1 i c f p) = D1 ('MetaData "M1" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "M1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unM1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f p))))

Methods

from :: M1 i c f p -> Rep (M1 i c f p) x #

to :: Rep (M1 i c f p) x -> M1 i c f p #

Generic (a, b, c, d, e) 
Instance details

Defined in GHC.Internal.Generics

Methods

from :: (a, b, c, d, e) -> Rep (a, b, c, d, e) x #

to :: Rep (a, b, c, d, e) x -> (a, b, c, d, e) #

Generic (a, b, c, d, e, f) 
Instance details

Defined in GHC.Internal.Generics

Methods

from :: (a, b, c, d, e, f) -> Rep (a, b, c, d, e, f) x #

to :: Rep (a, b, c, d, e, f) x -> (a, b, c, d, e, f) #

Generic (a, b, c, d, e, f, g) 
Instance details

Defined in GHC.Internal.Generics

Methods

from :: (a, b, c, d, e, f, g) -> Rep (a, b, c, d, e, f, g) x #

to :: Rep (a, b, c, d, e, f, g) x -> (a, b, c, d, e, f, g) #

Generic (a, b, c, d, e, f, g, h) 
Instance details

Defined in GHC.Internal.Generics

Methods

from :: (a, b, c, d, e, f, g, h) -> Rep (a, b, c, d, e, f, g, h) x #

to :: Rep (a, b, c, d, e, f, g, h) x -> (a, b, c, d, e, f, g, h) #

Generic (a, b, c, d, e, f, g, h, i) 
Instance details

Defined in GHC.Internal.Generics

Methods

from :: (a, b, c, d, e, f, g, h, i) -> Rep (a, b, c, d, e, f, g, h, i) x #

to :: Rep (a, b, c, d, e, f, g, h, i) x -> (a, b, c, d, e, f, g, h, i) #

Generic (a, b, c, d, e, f, g, h, i, j) 
Instance details

Defined in GHC.Internal.Generics

Methods

from :: (a, b, c, d, e, f, g, h, i, j) -> Rep (a, b, c, d, e, f, g, h, i, j) x #

to :: Rep (a, b, c, d, e, f, g, h, i, j) x -> (a, b, c, d, e, f, g, h, i, j) #

Generic (a, b, c, d, e, f, g, h, i, j, k) 
Instance details

Defined in GHC.Internal.Generics

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k) -> Rep (a, b, c, d, e, f, g, h, i, j, k) x #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k) x -> (a, b, c, d, e, f, g, h, i, j, k) #

Generic (a, b, c, d, e, f, g, h, i, j, k, l) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (a, b, c, d, e, f, g, h, i, j, k, l)

Since: base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l) x #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l) x -> (a, b, c, d, e, f, g, h, i, j, k, l) #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (a, b, c, d, e, f, g, h, i, j, k, l, m) = D1 ('MetaData "Tuple13" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m))))))

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m) x #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m) x -> (a, b, c, d, e, f, g, h, i, j, k, l, m) #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n) = D1 ('MetaData "Tuple14" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 n))))))

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n) x #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n) x -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) = D1 ('MetaData "Tuple15" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g)))) :*: (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 n) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 o))))))

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) x #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) x -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

class Generic1 (f :: k -> Type) #

Representable types of kind * -> * (or kind k -> *, when PolyKinds is enabled). This class is derivable in GHC with the DeriveGeneric flag on.

A Generic1 instance must satisfy the following laws:

from1 . to1id
to1 . from1id

Minimal complete definition

from1, to1

Instances

Instances details
Generic1 Complex 
Instance details

Defined in Data.Complex

Associated Types

type Rep1 Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

from1 :: Complex a -> Rep1 Complex a #

to1 :: Rep1 Complex a -> Complex a #

Generic1 First 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep1 First = D1 ('MetaData "First" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: First a -> Rep1 First a #

to1 :: Rep1 First a -> First a #

Generic1 Last 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep1 Last = D1 ('MetaData "Last" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Last a -> Rep1 Last a #

to1 :: Rep1 Last a -> Last a #

Generic1 Max 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep1 Max = D1 ('MetaData "Max" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Max" 'PrefixI 'True) (S1 ('MetaSel ('Just "getMax") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Max a -> Rep1 Max a #

to1 :: Rep1 Max a -> Max a #

Generic1 Min 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep1 Min = D1 ('MetaData "Min" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Min" 'PrefixI 'True) (S1 ('MetaSel ('Just "getMin") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Min a -> Rep1 Min a #

to1 :: Rep1 Min a -> Min a #

Generic1 WrappedMonoid 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 WrappedMonoid

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep1 WrappedMonoid = D1 ('MetaData "WrappedMonoid" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "WrapMonoid" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapMonoid") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
Generic1 NonEmpty 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 NonEmpty

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: NonEmpty a -> Rep1 NonEmpty a #

to1 :: Rep1 NonEmpty a -> NonEmpty a #

Generic1 Identity 
Instance details

Defined in GHC.Internal.Data.Functor.Identity

Associated Types

type Rep1 Identity

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

type Rep1 Identity = D1 ('MetaData "Identity" "GHC.Internal.Data.Functor.Identity" "ghc-internal" 'True) (C1 ('MetaCons "Identity" 'PrefixI 'True) (S1 ('MetaSel ('Just "runIdentity") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Identity a -> Rep1 Identity a #

to1 :: Rep1 Identity a -> Identity a #

Generic1 First 
Instance details

Defined in GHC.Internal.Data.Monoid

Associated Types

type Rep1 First

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep1 First = D1 ('MetaData "First" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Maybe)))

Methods

from1 :: First a -> Rep1 First a #

to1 :: Rep1 First a -> First a #

Generic1 Last 
Instance details

Defined in GHC.Internal.Data.Monoid

Associated Types

type Rep1 Last

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep1 Last = D1 ('MetaData "Last" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Maybe)))

Methods

from1 :: Last a -> Rep1 Last a #

to1 :: Rep1 Last a -> Last a #

Generic1 Down 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 Down

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Down = D1 ('MetaData "Down" "GHC.Internal.Data.Ord" "ghc-internal" 'True) (C1 ('MetaCons "Down" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDown") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Down a -> Rep1 Down a #

to1 :: Rep1 Down a -> Down a #

Generic1 Dual 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep1 Dual

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 Dual = D1 ('MetaData "Dual" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Dual" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDual") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Dual a -> Rep1 Dual a #

to1 :: Rep1 Dual a -> Dual a #

Generic1 Product 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep1 Product

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 Product = D1 ('MetaData "Product" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Product" 'PrefixI 'True) (S1 ('MetaSel ('Just "getProduct") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Product a -> Rep1 Product a #

to1 :: Rep1 Product a -> Product a #

Generic1 Sum 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep1 Sum

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 Sum = D1 ('MetaData "Sum" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Sum" 'PrefixI 'True) (S1 ('MetaSel ('Just "getSum") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Sum a -> Rep1 Sum a #

to1 :: Rep1 Sum a -> Sum a #

Generic1 ZipList 
Instance details

Defined in GHC.Internal.Functor.ZipList

Associated Types

type Rep1 ZipList

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Functor.ZipList

type Rep1 ZipList = D1 ('MetaData "ZipList" "GHC.Internal.Functor.ZipList" "ghc-internal" 'True) (C1 ('MetaCons "ZipList" 'PrefixI 'True) (S1 ('MetaSel ('Just "getZipList") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 [])))

Methods

from1 :: ZipList a -> Rep1 ZipList a #

to1 :: Rep1 ZipList a -> ZipList a #

Generic1 Par1 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 Par1

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Par1 = D1 ('MetaData "Par1" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "Par1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unPar1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Par1 a -> Rep1 Par1 a #

to1 :: Rep1 Par1 a -> Par1 a #

Generic1 Maybe 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 Maybe

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 Maybe = D1 ('MetaData "Maybe" "GHC.Internal.Maybe" "ghc-internal" 'False) (C1 ('MetaCons "Nothing" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Just" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Maybe a -> Rep1 Maybe a #

to1 :: Rep1 Maybe a -> Maybe a #

Generic1 Solo 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 Solo

Since: base-4.15

Instance details

Defined in GHC.Internal.Generics

type Rep1 Solo = D1 ('MetaData "Solo" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "MkSolo" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Solo a -> Rep1 Solo a #

to1 :: Rep1 Solo a -> Solo a #

Generic1 [] 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 []

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: [a] -> Rep1 [] a #

to1 :: Rep1 [] a -> [a] #

Generic1 (WrappedMonad m :: Type -> Type) 
Instance details

Defined in Control.Applicative

Associated Types

type Rep1 (WrappedMonad m :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

type Rep1 (WrappedMonad m :: Type -> Type) = D1 ('MetaData "WrappedMonad" "Control.Applicative" "base" 'True) (C1 ('MetaCons "WrapMonad" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapMonad") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 m)))

Methods

from1 :: WrappedMonad m a -> Rep1 (WrappedMonad m) a #

to1 :: Rep1 (WrappedMonad m) a -> WrappedMonad m a #

Generic1 (Arg a :: Type -> Type) 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 (Arg a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

from1 :: Arg a a0 -> Rep1 (Arg a) a0 #

to1 :: Rep1 (Arg a) a0 -> Arg a a0 #

Generic1 (Either a :: Type -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (Either a :: Type -> Type)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (Either a :: Type -> Type) = D1 ('MetaData "Either" "GHC.Internal.Data.Either" "ghc-internal" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Either a a0 -> Rep1 (Either a) a0 #

to1 :: Rep1 (Either a) a0 -> Either a a0 #

Generic1 ((,) a :: Type -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,) a :: Type -> Type)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, a0) -> Rep1 ((,) a) a0 #

to1 :: Rep1 ((,) a) a0 -> (a, a0) #

Generic1 (Proxy :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (Proxy :: k -> Type)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (Proxy :: k -> Type) = D1 ('MetaData "Proxy" "GHC.Internal.Data.Proxy" "ghc-internal" 'False) (C1 ('MetaCons "Proxy" 'PrefixI 'False) (U1 :: k -> Type))

Methods

from1 :: forall (a :: k). Proxy a -> Rep1 (Proxy :: k -> Type) a #

to1 :: forall (a :: k). Rep1 (Proxy :: k -> Type) a -> Proxy a #

Generic1 (U1 :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (U1 :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (U1 :: k -> Type) = D1 ('MetaData "U1" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "U1" 'PrefixI 'False) (U1 :: k -> Type))

Methods

from1 :: forall (a :: k). U1 a -> Rep1 (U1 :: k -> Type) a #

to1 :: forall (a :: k). Rep1 (U1 :: k -> Type) a -> U1 a #

Generic1 (V1 :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (V1 :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (V1 :: k -> Type) = D1 ('MetaData "V1" "GHC.Internal.Generics" "ghc-internal" 'False) (V1 :: k -> Type)

Methods

from1 :: forall (a :: k). V1 a -> Rep1 (V1 :: k -> Type) a #

to1 :: forall (a :: k). Rep1 (V1 :: k -> Type) a -> V1 a #

Generic1 (WrappedArrow a b :: Type -> Type) 
Instance details

Defined in Control.Applicative

Associated Types

type Rep1 (WrappedArrow a b :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

type Rep1 (WrappedArrow a b :: Type -> Type) = D1 ('MetaData "WrappedArrow" "Control.Applicative" "base" 'True) (C1 ('MetaCons "WrapArrow" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapArrow") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 (a b))))

Methods

from1 :: WrappedArrow a b a0 -> Rep1 (WrappedArrow a b) a0 #

to1 :: Rep1 (WrappedArrow a b) a0 -> WrappedArrow a b a0 #

Generic1 (Kleisli m a :: Type -> Type) 
Instance details

Defined in GHC.Internal.Control.Arrow

Associated Types

type Rep1 (Kleisli m a :: Type -> Type)

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

type Rep1 (Kleisli m a :: Type -> Type) = D1 ('MetaData "Kleisli" "GHC.Internal.Control.Arrow" "ghc-internal" 'True) (C1 ('MetaCons "Kleisli" 'PrefixI 'True) (S1 ('MetaSel ('Just "runKleisli") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) ((FUN 'Many a :: Type -> Type) :.: Rec1 m)))

Methods

from1 :: Kleisli m a a0 -> Rep1 (Kleisli m a) a0 #

to1 :: Rep1 (Kleisli m a) a0 -> Kleisli m a a0 #

Generic1 ((,,) a b :: Type -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,) a b :: Type -> Type)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, a0) -> Rep1 ((,,) a b) a0 #

to1 :: Rep1 ((,,) a b) a0 -> (a, b, a0) #

Generic1 (Const a :: k -> Type) 
Instance details

Defined in GHC.Internal.Data.Functor.Const

Associated Types

type Rep1 (Const a :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

type Rep1 (Const a :: k -> Type) = D1 ('MetaData "Const" "GHC.Internal.Data.Functor.Const" "ghc-internal" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from1 :: forall (a0 :: k). Const a a0 -> Rep1 (Const a :: k -> Type) a0 #

to1 :: forall (a0 :: k). Rep1 (Const a :: k -> Type) a0 -> Const a a0 #

Generic1 (Ap f :: k -> Type) 
Instance details

Defined in GHC.Internal.Data.Monoid

Associated Types

type Rep1 (Ap f :: k -> Type)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep1 (Ap f :: k -> Type) = D1 ('MetaData "Ap" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "Ap" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAp") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))

Methods

from1 :: forall (a :: k). Ap f a -> Rep1 (Ap f) a #

to1 :: forall (a :: k). Rep1 (Ap f) a -> Ap f a #

Generic1 (Alt f :: k -> Type) 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep1 (Alt f :: k -> Type)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 (Alt f :: k -> Type) = D1 ('MetaData "Alt" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Alt" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAlt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))

Methods

from1 :: forall (a :: k). Alt f a -> Rep1 (Alt f) a #

to1 :: forall (a :: k). Rep1 (Alt f) a -> Alt f a #

Generic1 (Rec1 f :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (Rec1 f :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (Rec1 f :: k -> Type) = D1 ('MetaData "Rec1" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "Rec1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unRec1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))

Methods

from1 :: forall (a :: k). Rec1 f a -> Rep1 (Rec1 f) a #

to1 :: forall (a :: k). Rep1 (Rec1 f) a -> Rec1 f a #

Generic1 (URec (Ptr ()) :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec (Ptr ()) :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec (Ptr ()) :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UAddr" 'PrefixI 'True) (S1 ('MetaSel ('Just "uAddr#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UAddr :: k -> Type)))

Methods

from1 :: forall (a :: k). URec (Ptr ()) a -> Rep1 (URec (Ptr ()) :: k -> Type) a #

to1 :: forall (a :: k). Rep1 (URec (Ptr ()) :: k -> Type) a -> URec (Ptr ()) a #

Generic1 (URec Char :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec Char :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Char :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UChar" 'PrefixI 'True) (S1 ('MetaSel ('Just "uChar#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UChar :: k -> Type)))

Methods

from1 :: forall (a :: k). URec Char a -> Rep1 (URec Char :: k -> Type) a #

to1 :: forall (a :: k). Rep1 (URec Char :: k -> Type) a -> URec Char a #

Generic1 (URec Double :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec Double :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Double :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: k -> Type)))

Methods

from1 :: forall (a :: k). URec Double a -> Rep1 (URec Double :: k -> Type) a #

to1 :: forall (a :: k). Rep1 (URec Double :: k -> Type) a -> URec Double a #

Generic1 (URec Float :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec Float :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Float :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: k -> Type)))

Methods

from1 :: forall (a :: k). URec Float a -> Rep1 (URec Float :: k -> Type) a #

to1 :: forall (a :: k). Rep1 (URec Float :: k -> Type) a -> URec Float a #

Generic1 (URec Int :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec Int :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Int :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UInt" 'PrefixI 'True) (S1 ('MetaSel ('Just "uInt#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UInt :: k -> Type)))

Methods

from1 :: forall (a :: k). URec Int a -> Rep1 (URec Int :: k -> Type) a #

to1 :: forall (a :: k). Rep1 (URec Int :: k -> Type) a -> URec Int a #

Generic1 (URec Word :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec Word :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Word :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UWord" 'PrefixI 'True) (S1 ('MetaSel ('Just "uWord#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UWord :: k -> Type)))

Methods

from1 :: forall (a :: k). URec Word a -> Rep1 (URec Word :: k -> Type) a #

to1 :: forall (a :: k). Rep1 (URec Word :: k -> Type) a -> URec Word a #

Generic1 ((,,,) a b c :: Type -> Type) 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, a0) -> Rep1 ((,,,) a b c) a0 #

to1 :: Rep1 ((,,,) a b c) a0 -> (a, b, c, a0) #

Generic1 (Product f g :: k -> Type) 
Instance details

Defined in Data.Functor.Product

Associated Types

type Rep1 (Product f g :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

from1 :: forall (a :: k). Product f g a -> Rep1 (Product f g) a #

to1 :: forall (a :: k). Rep1 (Product f g) a -> Product f g a #

Generic1 (Sum f g :: k -> Type) 
Instance details

Defined in Data.Functor.Sum

Associated Types

type Rep1 (Sum f g :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

from1 :: forall (a :: k). Sum f g a -> Rep1 (Sum f g) a #

to1 :: forall (a :: k). Rep1 (Sum f g) a -> Sum f g a #

Generic1 (f :*: g :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (f :*: g :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (f :*: g :: k -> Type) = D1 ('MetaData ":*:" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons ":*:" ('InfixI 'RightAssociative 6) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 g)))

Methods

from1 :: forall (a :: k). (f :*: g) a -> Rep1 (f :*: g) a #

to1 :: forall (a :: k). Rep1 (f :*: g) a -> (f :*: g) a #

Generic1 (f :+: g :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (f :+: g :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (f :+: g :: k -> Type) = D1 ('MetaData ":+:" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "L1" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)) :+: C1 ('MetaCons "R1" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 g)))

Methods

from1 :: forall (a :: k). (f :+: g) a -> Rep1 (f :+: g) a #

to1 :: forall (a :: k). Rep1 (f :+: g) a -> (f :+: g) a #

Generic1 (K1 i c :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (K1 i c :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (K1 i c :: k -> Type) = D1 ('MetaData "K1" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "K1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unK1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c)))

Methods

from1 :: forall (a :: k). K1 i c a -> Rep1 (K1 i c :: k -> Type) a #

to1 :: forall (a :: k). Rep1 (K1 i c :: k -> Type) a -> K1 i c a #

Generic1 ((,,,,) a b c d :: Type -> Type) 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, a0) -> Rep1 ((,,,,) a b c d) a0 #

to1 :: Rep1 ((,,,,) a b c d) a0 -> (a, b, c, d, a0) #

Functor f => Generic1 (Compose f g :: k -> Type) 
Instance details

Defined in Data.Functor.Compose

Associated Types

type Rep1 (Compose f g :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

type Rep1 (Compose f g :: k -> Type) = D1 ('MetaData "Compose" "Data.Functor.Compose" "base" 'True) (C1 ('MetaCons "Compose" 'PrefixI 'True) (S1 ('MetaSel ('Just "getCompose") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (f :.: Rec1 g)))

Methods

from1 :: forall (a :: k). Compose f g a -> Rep1 (Compose f g) a #

to1 :: forall (a :: k). Rep1 (Compose f g) a -> Compose f g a #

Functor f => Generic1 (f :.: g :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (f :.: g :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (f :.: g :: k -> Type) = D1 ('MetaData ":.:" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "Comp1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unComp1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (f :.: Rec1 g)))

Methods

from1 :: forall (a :: k). (f :.: g) a -> Rep1 (f :.: g) a #

to1 :: forall (a :: k). Rep1 (f :.: g) a -> (f :.: g) a #

Generic1 (M1 i c f :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (M1 i c f :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (M1 i c f :: k -> Type) = D1 ('MetaData "M1" "GHC.Internal.Generics" "ghc-internal" 'True) (C1 ('MetaCons "M1" 'PrefixI 'True) (S1 ('MetaSel ('Just "unM1") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))

Methods

from1 :: forall (a :: k). M1 i c f a -> Rep1 (M1 i c f) a #

to1 :: forall (a :: k). Rep1 (M1 i c f) a -> M1 i c f a #

Generic1 ((,,,,,) a b c d e :: Type -> Type) 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, a0) -> Rep1 ((,,,,,) a b c d e) a0 #

to1 :: Rep1 ((,,,,,) a b c d e) a0 -> (a, b, c, d, e, a0) #

Generic1 ((,,,,,,) a b c d e f :: Type -> Type) 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, a0) -> Rep1 ((,,,,,,) a b c d e f) a0 #

to1 :: Rep1 ((,,,,,,) a b c d e f) a0 -> (a, b, c, d, e, f, a0) #

Generic1 ((,,,,,,,) a b c d e f g :: Type -> Type) 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, g, a0) -> Rep1 ((,,,,,,,) a b c d e f g) a0 #

to1 :: Rep1 ((,,,,,,,) a b c d e f g) a0 -> (a, b, c, d, e, f, g, a0) #

Generic1 ((,,,,,,,,) a b c d e f g h :: Type -> Type) 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, g, h, a0) -> Rep1 ((,,,,,,,,) a b c d e f g h) a0 #

to1 :: Rep1 ((,,,,,,,,) a b c d e f g h) a0 -> (a, b, c, d, e, f, g, h, a0) #

Generic1 ((,,,,,,,,,) a b c d e f g h i :: Type -> Type) 
Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, g, h, i, a0) -> Rep1 ((,,,,,,,,,) a b c d e f g h i) a0 #

to1 :: Rep1 ((,,,,,,,,,) a b c d e f g h i) a0 -> (a, b, c, d, e, f, g, h, i, a0) #

Generic1 ((,,,,,,,,,,) a b c d e f g h i j :: Type -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,,,,,,,,,) a b c d e f g h i j :: Type -> Type)

Since: base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, g, h, i, j, a0) -> Rep1 ((,,,,,,,,,,) a b c d e f g h i j) a0 #

to1 :: Rep1 ((,,,,,,,,,,) a b c d e f g h i j) a0 -> (a, b, c, d, e, f, g, h, i, j, a0) #

Generic1 ((,,,,,,,,,,,) a b c d e f g h i j k :: Type -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,,,,,,,,,,) a b c d e f g h i j k :: Type -> Type)

Since: base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: (a, b, c, d, e, f, g, h, i, j, k, a0) -> Rep1 ((,,,,,,,,,,,) a b c d e f g h i j k) a0 #

to1 :: Rep1 ((,,,,,,,,,,,) a b c d e f g h i j k) a0 -> (a, b, c, d, e, f, g, h, i, j, k, a0) #

Generic1 ((,,,,,,,,,,,,) a b c d e f g h i j k l :: Type -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l :: Type -> Type)

Since: base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l :: Type -> Type) = D1 ('MetaData "Tuple13" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)))))

Methods

from1 :: (a, b, c, d, e, f, g, h, i, j, k, l, a0) -> Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l) a0 #

to1 :: Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l) a0 -> (a, b, c, d, e, f, g, h, i, j, k, l, a0) #

Generic1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m :: Type -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m :: Type -> Type)

Since: base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m :: Type -> Type) = D1 ('MetaData "Tuple14" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)))))

Methods

from1 :: (a, b, c, d, e, f, g, h, i, j, k, l, m, a0) -> Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m) a0 #

to1 :: Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m) a0 -> (a, b, c, d, e, f, g, h, i, j, k, l, m, a0) #

Generic1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n :: Type -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n :: Type -> Type)

Since: base-4.16.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n :: Type -> Type) = D1 ('MetaData "Tuple15" "GHC.Tuple" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g)))) :*: (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 n) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)))))

Methods

from1 :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, a0) -> Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n) a0 #

to1 :: Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n) a0 -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, a0) #

data Double #

Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.

Instances

Instances details
PrintfArg Double

Since: base-2.1

Instance details

Defined in Text.Printf

Data Double

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double #

toConstr :: Double -> Constr #

dataTypeOf :: Double -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) #

gmapT :: (forall b. Data b => b -> b) -> Double -> Double #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r #

gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double #

Enum Double

fromEnum just truncates its argument, beware of all sorts of overflows.

List generators have extremely peculiar behavior, mandated by Haskell Report 2010:

>>> [0..1.5]
[0.0,1.0,2.0]

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Floating Double

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

RealFloat Double

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Storable Double

Since: base-2.1

Instance details

Defined in GHC.Internal.Foreign.Storable

Num Double

This instance implements IEEE 754 standard with all its usual pitfalls about NaN, infinities and negative zero. Neither addition nor multiplication are associative or distributive:

>>> (0.1 + 0.1) + 0.4 == 0.1 + (0.1 + 0.4)
False
>>> (0.1 + 0.2) * 0.3 == 0.1 * 0.3 + 0.2 * 0.3
False
>>> (0.1 * 0.1) * 0.3 == 0.1 * (0.1 * 0.3)
False

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Read Double

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Fractional Double

This instance implements IEEE 754 standard with all its usual pitfalls about NaN, infinities and negative zero.

>>> 0 == (-0 :: Double)
True
>>> recip 0 == recip (-0 :: Double)
False
>>> map (/ 0) [-1, 0, 1]
[-Infinity,NaN,Infinity]
>>> map (* 0) $ map (/ 0) [-1, 0, 1]
[NaN,NaN,NaN]

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Real Double

Beware that toRational generates garbage for non-finite arguments:

>>> toRational (1/0)
179769313 (and 300 more digits...) % 1
>>> toRational (0/0)
269653970 (and 300 more digits...) % 1

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

RealFrac Double

Beware that results for non-finite arguments are garbage:

>>> [ f x | f <- [round, floor, ceiling], x <- [-1/0, 0/0, 1/0] ] :: [Int]
[0,0,0,0,0,0,0,0,0]
>>> map properFraction [-1/0, 0/0, 1/0] :: [(Int, Double)]
[(0,0.0),(0,0.0),(0,0.0)]

and get even more non-sensical if you ask for Integer instead of Int.

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Methods

properFraction :: Integral b => Double -> (b, Double) #

truncate :: Integral b => Double -> b #

round :: Integral b => Double -> b #

ceiling :: Integral b => Double -> b #

floor :: Integral b => Double -> b #

Show Double

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Eq Double

Note that due to the presence of NaN, Double's Eq instance does not satisfy reflexivity.

>>> 0/0 == (0/0 :: Double)
False

Also note that Double's Eq instance does not satisfy substitutivity:

>>> 0 == (-0 :: Double)
True
>>> recip 0 == recip (-0 :: Double)
False
Instance details

Defined in GHC.Classes

Methods

(==) :: Double -> Double -> Bool #

(/=) :: Double -> Double -> Bool #

Ord Double

IEEE 754 Double-precision type includes not only numbers, but also positive and negative infinities and a special element called NaN (which can be quiet or signal).

IEEE 754-2008, section 5.11 requires that if at least one of arguments of <=, <, >, >= is NaN then the result of the comparison is False, and instance Ord Double complies with this requirement. This violates the reflexivity: both NaN <= NaN and NaN >= NaN are False.

IEEE 754-2008, section 5.10 defines totalOrder predicate. Unfortunately, compare on Doubles violates the IEEE standard and does not define a total order. More specifically, both compare NaN x and compare x NaN always return GT.

Thus, users must be extremely cautious when using instance Ord Double. For instance, one should avoid ordered containers with keys represented by Double, because data loss and corruption may happen. An IEEE-compliant compare is available in fp-ieee package as TotallyOrdered newtype.

Moving further, the behaviour of min and max with regards to NaN is also non-compliant. IEEE 754-2008, section 5.3.1 defines that quiet NaN should be treated as a missing data by minNum and maxNum functions, for example, minNum(NaN, 1) = minNum(1, NaN) = 1. Some languages such as Java deviate from the standard implementing minNum(NaN, 1) = minNum(1, NaN) = NaN. However, min / max in base are even worse: min NaN 1 is 1, but min 1 NaN is NaN.

IEEE 754-2008 compliant min / max can be found in ieee754 package under minNum / maxNum names. Implementations compliant with minimumNumber / maximumNumber from a newer IEEE 754-2019, section 9.6 are available from fp-ieee package.

Instance details

Defined in GHC.Classes

Generic1 (URec Double :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec Double :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Double :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: k -> Type)))

Methods

from1 :: forall (a :: k). URec Double a -> Rep1 (URec Double :: k -> Type) a #

to1 :: forall (a :: k). Rep1 (URec Double :: k -> Type) a -> URec Double a #

Foldable (UDouble :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UDouble m -> m #

foldMap :: Monoid m => (a -> m) -> UDouble a -> m #

foldMap' :: Monoid m => (a -> m) -> UDouble a -> m #

foldr :: (a -> b -> b) -> b -> UDouble a -> b #

foldr' :: (a -> b -> b) -> b -> UDouble a -> b #

foldl :: (b -> a -> b) -> b -> UDouble a -> b #

foldl' :: (b -> a -> b) -> b -> UDouble a -> b #

foldr1 :: (a -> a -> a) -> UDouble a -> a #

foldl1 :: (a -> a -> a) -> UDouble a -> a #

toList :: UDouble a -> [a] #

null :: UDouble a -> Bool #

length :: UDouble a -> Int #

elem :: Eq a => a -> UDouble a -> Bool #

maximum :: Ord a => UDouble a -> a #

minimum :: Ord a => UDouble a -> a #

sum :: Num a => UDouble a -> a #

product :: Num a => UDouble a -> a #

Traversable (UDouble :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UDouble a -> f (UDouble b) #

sequenceA :: Applicative f => UDouble (f a) -> f (UDouble a) #

mapM :: Monad m => (a -> m b) -> UDouble a -> m (UDouble b) #

sequence :: Monad m => UDouble (m a) -> m (UDouble a) #

Functor (URec Double :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b #

(<$) :: a -> URec Double b -> URec Double a #

Generic (URec Double p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Double p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: Type -> Type)))

Methods

from :: URec Double p -> Rep (URec Double p) x #

to :: Rep (URec Double p) x -> URec Double p #

Show (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> URec Double p -> ShowS #

show :: URec Double p -> String #

showList :: [URec Double p] -> ShowS #

Eq (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec Double p -> URec Double p -> Bool #

(/=) :: URec Double p -> URec Double p -> Bool #

Ord (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

compare :: URec Double p -> URec Double p -> Ordering #

(<) :: URec Double p -> URec Double p -> Bool #

(<=) :: URec Double p -> URec Double p -> Bool #

(>) :: URec Double p -> URec Double p -> Bool #

(>=) :: URec Double p -> URec Double p -> Bool #

max :: URec Double p -> URec Double p -> URec Double p #

min :: URec Double p -> URec Double p -> URec Double p #

data URec Double (p :: k)

Used for marking occurrences of Double#

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

data URec Double (p :: k) = UDouble {}
type Rep1 (URec Double :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Double :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: k -> Type)))
type Rep (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Double p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: Type -> Type)))

data Float #

Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.

Instances

Instances details
PrintfArg Float

Since: base-2.1

Instance details

Defined in Text.Printf

Data Float

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float #

toConstr :: Float -> Constr #

dataTypeOf :: Float -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) #

gmapT :: (forall b. Data b => b -> b) -> Float -> Float #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r #

gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float #

Enum Float

fromEnum just truncates its argument, beware of all sorts of overflows.

List generators have extremely peculiar behavior, mandated by Haskell Report 2010:

>>> [0..1.5 :: Float]
[0.0,1.0,2.0]

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Floating Float

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

RealFloat Float

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Storable Float

Since: base-2.1

Instance details

Defined in GHC.Internal.Foreign.Storable

Methods

sizeOf :: Float -> Int #

alignment :: Float -> Int #

peekElemOff :: Ptr Float -> Int -> IO Float #

pokeElemOff :: Ptr Float -> Int -> Float -> IO () #

peekByteOff :: Ptr b -> Int -> IO Float #

pokeByteOff :: Ptr b -> Int -> Float -> IO () #

peek :: Ptr Float -> IO Float #

poke :: Ptr Float -> Float -> IO () #

Num Float

This instance implements IEEE 754 standard with all its usual pitfalls about NaN, infinities and negative zero. Neither addition nor multiplication are associative or distributive:

>>> (0.1 + 0.1 :: Float) + 0.5 == 0.1 + (0.1 + 0.5)
False
>>> (0.1 + 0.2 :: Float) * 0.9 == 0.1 * 0.9 + 0.2 * 0.9
False
>>> (0.1 * 0.1 :: Float) * 0.9 == 0.1 * (0.1 * 0.9)
False

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Read Float

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Fractional Float

This instance implements IEEE 754 standard with all its usual pitfalls about NaN, infinities and negative zero.

>>> 0 == (-0 :: Float)
True
>>> recip 0 == recip (-0 :: Float)
False
>>> map (/ 0) [-1, 0, 1 :: Float]
[-Infinity,NaN,Infinity]
>>> map (* 0) $ map (/ 0) [-1, 0, 1 :: Float]
[NaN,NaN,NaN]

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Real Float

Beware that toRational generates garbage for non-finite arguments:

>>> toRational (1/0 :: Float)
340282366920938463463374607431768211456 % 1
>>> toRational (0/0 :: Float)
510423550381407695195061911147652317184 % 1

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Methods

toRational :: Float -> Rational #

RealFrac Float

Beware that results for non-finite arguments are garbage:

>>> [ f x | f <- [round, floor, ceiling], x <- [-1/0, 0/0, 1/0 :: Float] ] :: [Int]
[0,0,0,0,0,0,0,0,0]
>>> map properFraction [-1/0, 0/0, 1/0] :: [(Int, Float)]
[(0,0.0),(0,0.0),(0,0.0)]

and get even more non-sensical if you ask for Integer instead of Int.

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Methods

properFraction :: Integral b => Float -> (b, Float) #

truncate :: Integral b => Float -> b #

round :: Integral b => Float -> b #

ceiling :: Integral b => Float -> b #

floor :: Integral b => Float -> b #

Show Float

Since: base-2.1

Instance details

Defined in GHC.Internal.Float

Methods

showsPrec :: Int -> Float -> ShowS #

show :: Float -> String #

showList :: [Float] -> ShowS #

Eq Float

Note that due to the presence of NaN, Float's Eq instance does not satisfy reflexivity.

>>> 0/0 == (0/0 :: Float)
False

Also note that Float's Eq instance does not satisfy extensionality:

>>> 0 == (-0 :: Float)
True
>>> recip 0 == recip (-0 :: Float)
False
Instance details

Defined in GHC.Classes

Methods

(==) :: Float -> Float -> Bool #

(/=) :: Float -> Float -> Bool #

Ord Float

See instance Ord Double for discussion of deviations from IEEE 754 standard.

Instance details

Defined in GHC.Classes

Methods

compare :: Float -> Float -> Ordering #

(<) :: Float -> Float -> Bool #

(<=) :: Float -> Float -> Bool #

(>) :: Float -> Float -> Bool #

(>=) :: Float -> Float -> Bool #

max :: Float -> Float -> Float #

min :: Float -> Float -> Float #

Generic1 (URec Float :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec Float :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Float :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: k -> Type)))

Methods

from1 :: forall (a :: k). URec Float a -> Rep1 (URec Float :: k -> Type) a #

to1 :: forall (a :: k). Rep1 (URec Float :: k -> Type) a -> URec Float a #

Foldable (UFloat :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UFloat m -> m #

foldMap :: Monoid m => (a -> m) -> UFloat a -> m #

foldMap' :: Monoid m => (a -> m) -> UFloat a -> m #

foldr :: (a -> b -> b) -> b -> UFloat a -> b #

foldr' :: (a -> b -> b) -> b -> UFloat a -> b #

foldl :: (b -> a -> b) -> b -> UFloat a -> b #

foldl' :: (b -> a -> b) -> b -> UFloat a -> b #

foldr1 :: (a -> a -> a) -> UFloat a -> a #

foldl1 :: (a -> a -> a) -> UFloat a -> a #

toList :: UFloat a -> [a] #

null :: UFloat a -> Bool #

length :: UFloat a -> Int #

elem :: Eq a => a -> UFloat a -> Bool #

maximum :: Ord a => UFloat a -> a #

minimum :: Ord a => UFloat a -> a #

sum :: Num a => UFloat a -> a #

product :: Num a => UFloat a -> a #

Traversable (UFloat :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UFloat a -> f (UFloat b) #

sequenceA :: Applicative f => UFloat (f a) -> f (UFloat a) #

mapM :: Monad m => (a -> m b) -> UFloat a -> m (UFloat b) #

sequence :: Monad m => UFloat (m a) -> m (UFloat a) #

Functor (URec Float :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b #

(<$) :: a -> URec Float b -> URec Float a #

Generic (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

type Rep (URec Float p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: Type -> Type)))

Methods

from :: URec Float p -> Rep (URec Float p) x #

to :: Rep (URec Float p) x -> URec Float p #

Show (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> URec Float p -> ShowS #

show :: URec Float p -> String #

showList :: [URec Float p] -> ShowS #

Eq (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec Float p -> URec Float p -> Bool #

(/=) :: URec Float p -> URec Float p -> Bool #

Ord (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

Methods

compare :: URec Float p -> URec Float p -> Ordering #

(<) :: URec Float p -> URec Float p -> Bool #

(<=) :: URec Float p -> URec Float p -> Bool #

(>) :: URec Float p -> URec Float p -> Bool #

(>=) :: URec Float p -> URec Float p -> Bool #

max :: URec Float p -> URec Float p -> URec Float p #

min :: URec Float p -> URec Float p -> URec Float p #

data URec Float (p :: k)

Used for marking occurrences of Float#

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

data URec Float (p :: k) = UFloat {}
type Rep1 (URec Float :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Float :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: k -> Type)))
type Rep (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

type Rep (URec Float p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: Type -> Type)))

data Integer #

Arbitrary precision integers. In contrast with fixed-size integral types such as Int, the Integer type represents the entire infinite range of integers.

Integers are stored in a kind of sign-magnitude form, hence do not expect two's complement form when using bit operations.

If the value is small (i.e., fits into an Int), the IS constructor is used. Otherwise IP and IN constructors are used to store a BigNat representing the positive or the negative value magnitude, respectively.

Invariant: IP and IN are used iff the value does not fit in IS.

Instances

Instances details
PrintfArg Integer

Since: base-2.1

Instance details

Defined in Text.Printf

Bits Integer

Since: base-2.1

Instance details

Defined in GHC.Internal.Bits

Data Integer

Since: base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer #

toConstr :: Integer -> Constr #

dataTypeOf :: Integer -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) #

gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r #

gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

Enum Integer

Since: base-2.1

Instance details

Defined in GHC.Internal.Enum

Ix Integer

Since: base-2.1

Instance details

Defined in GHC.Internal.Ix

Num Integer

Since: base-2.1

Instance details

Defined in GHC.Internal.Num

Read Integer

Since: base-2.1

Instance details

Defined in GHC.Internal.Read

Integral Integer

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Real Integer

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Real

Show Integer

Since: base-2.1

Instance details

Defined in GHC.Internal.Show

Eq Integer 
Instance details

Defined in GHC.Num.Integer

Methods

(==) :: Integer -> Integer -> Bool #

(/=) :: Integer -> Integer -> Bool #

Ord Integer 
Instance details

Defined in GHC.Num.Integer

class a ~# b => (a :: k) ~ (b :: k) infix 4 #

Lifted, homogeneous equality. By lifted, we mean that it can be bogus (deferred type error). By homogeneous, the two types a and b must have the same kinds.

data NonEmpty a #

Non-empty (and non-strict) list type.

Since: base-4.9.0.0

Constructors

a :| [a] infixr 5 

Instances

Instances details
MonadZip NonEmpty

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Zip

Methods

mzip :: NonEmpty a -> NonEmpty b -> NonEmpty (a, b) #

mzipWith :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c #

munzip :: NonEmpty (a, b) -> (NonEmpty a, NonEmpty b) #

Foldable1 NonEmpty

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => NonEmpty m -> m #

foldMap1 :: Semigroup m => (a -> m) -> NonEmpty a -> m #

foldMap1' :: Semigroup m => (a -> m) -> NonEmpty a -> m #

toNonEmpty :: NonEmpty a -> NonEmpty a #

maximum :: Ord a => NonEmpty a -> a #

minimum :: Ord a => NonEmpty a -> a #

head :: NonEmpty a -> a #

last :: NonEmpty a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> NonEmpty a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> NonEmpty a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> NonEmpty a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> NonEmpty a -> b #

Eq1 NonEmpty

Since: base-4.10.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq :: (a -> b -> Bool) -> NonEmpty a -> NonEmpty b -> Bool #

Ord1 NonEmpty

Since: base-4.10.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare :: (a -> b -> Ordering) -> NonEmpty a -> NonEmpty b -> Ordering #

Read1 NonEmpty

Since: base-4.10.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (NonEmpty a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [NonEmpty a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (NonEmpty a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [NonEmpty a] #

Show1 NonEmpty

Since: base-4.10.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> NonEmpty a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [NonEmpty a] -> ShowS #

Applicative NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

pure :: a -> NonEmpty a #

(<*>) :: NonEmpty (a -> b) -> NonEmpty a -> NonEmpty b #

liftA2 :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c #

(*>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

(<*) :: NonEmpty a -> NonEmpty b -> NonEmpty a #

Functor NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

fmap :: (a -> b) -> NonEmpty a -> NonEmpty b #

(<$) :: a -> NonEmpty b -> NonEmpty a #

Monad NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(>>=) :: NonEmpty a -> (a -> NonEmpty b) -> NonEmpty b #

(>>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

return :: a -> NonEmpty a #

MonadFix NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> NonEmpty a) -> NonEmpty a #

Foldable NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => NonEmpty m -> m #

foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m #

foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m #

foldr :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldl :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldr1 :: (a -> a -> a) -> NonEmpty a -> a #

foldl1 :: (a -> a -> a) -> NonEmpty a -> a #

toList :: NonEmpty a -> [a] #

null :: NonEmpty a -> Bool #

length :: NonEmpty a -> Int #

elem :: Eq a => a -> NonEmpty a -> Bool #

maximum :: Ord a => NonEmpty a -> a #

minimum :: Ord a => NonEmpty a -> a #

sum :: Num a => NonEmpty a -> a #

product :: Num a => NonEmpty a -> a #

Traversable NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> NonEmpty a -> f (NonEmpty b) #

sequenceA :: Applicative f => NonEmpty (f a) -> f (NonEmpty a) #

mapM :: Monad m => (a -> m b) -> NonEmpty a -> m (NonEmpty b) #

sequence :: Monad m => NonEmpty (m a) -> m (NonEmpty a) #

Generic1 NonEmpty 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 NonEmpty

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from1 :: NonEmpty a -> Rep1 NonEmpty a #

to1 :: Rep1 NonEmpty a -> NonEmpty a #

Semigroup (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(<>) :: NonEmpty a -> NonEmpty a -> NonEmpty a #

sconcat :: NonEmpty (NonEmpty a) -> NonEmpty a #

stimes :: Integral b => b -> NonEmpty a -> NonEmpty a #

Data a => Data (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) #

toConstr :: NonEmpty a -> Constr #

dataTypeOf :: NonEmpty a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) #

gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r #

gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) #

Generic (NonEmpty a) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (NonEmpty a)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

from :: NonEmpty a -> Rep (NonEmpty a) x #

to :: Rep (NonEmpty a) x -> NonEmpty a #

IsList (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.IsList

Associated Types

type Item (NonEmpty a) 
Instance details

Defined in GHC.Internal.IsList

type Item (NonEmpty a) = a

Methods

fromList :: [Item (NonEmpty a)] -> NonEmpty a #

fromListN :: Int -> [Item (NonEmpty a)] -> NonEmpty a #

toList :: NonEmpty a -> [Item (NonEmpty a)] #

Read a => Read (NonEmpty a)

Since: base-4.11.0.0

Instance details

Defined in GHC.Internal.Read

Show a => Show (NonEmpty a)

Since: base-4.11.0.0

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> NonEmpty a -> ShowS #

show :: NonEmpty a -> String #

showList :: [NonEmpty a] -> ShowS #

Eq a => Eq (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(==) :: NonEmpty a -> NonEmpty a -> Bool #

(/=) :: NonEmpty a -> NonEmpty a -> Bool #

Ord a => Ord (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

compare :: NonEmpty a -> NonEmpty a -> Ordering #

(<) :: NonEmpty a -> NonEmpty a -> Bool #

(<=) :: NonEmpty a -> NonEmpty a -> Bool #

(>) :: NonEmpty a -> NonEmpty a -> Bool #

(>=) :: NonEmpty a -> NonEmpty a -> Bool #

max :: NonEmpty a -> NonEmpty a -> NonEmpty a #

min :: NonEmpty a -> NonEmpty a -> NonEmpty a #

type Rep1 NonEmpty

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (NonEmpty a)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Generics

type Item (NonEmpty a) 
Instance details

Defined in GHC.Internal.IsList

type Item (NonEmpty a) = a

(^) :: (Num a, Integral b) => a -> b -> a infixr 8 #

raise a number to a non-negative integral power

error :: HasCallStack => [Char] -> a #

error stops execution and displays an error message.

errorWithoutStackTrace :: [Char] -> a #

A variant of error that does not produce a stack trace.

Since: base-4.9.0.0

undefined :: HasCallStack => a #

A special case of error. It is expected that compilers will recognize this and insert error messages which are more appropriate to the context in which undefined appears.

flip :: (a -> b -> c) -> b -> a -> c #

flip f takes its (first) two arguments in the reverse order of f.

flip f x y = f y x
flip . flip = id

Examples

Expand
>>> flip (++) "hello" "world"
"worldhello"
>>> let (.>) = flip (.) in (+1) .> show $ 5
"6"

($!) :: (a -> b) -> a -> b infixr 0 #

Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.

until :: (a -> Bool) -> (a -> a) -> a -> a #

until p f yields the result of applying f until p holds.

asTypeOf :: a -> a -> a #

asTypeOf is a type-restricted version of const. It is usually used as an infix operator, and its typing forces its first argument (which is usually overloaded) to have the same type as the second.

subtract :: Num a => a -> a -> a #

the same as flip (-).

Because - is treated specially in the Haskell grammar, (- e) is not a section, but an application of prefix negation. However, (subtract exp) is equivalent to the disallowed section.

type ShowS = String -> String #

The shows functions return a function that prepends the output String to an existing String. This allows constant-time concatenation of results using function composition.

shows :: Show a => a -> ShowS #

equivalent to showsPrec with a precedence of 0.

showChar :: Char -> ShowS #

utility function converting a Char to a show function that simply prepends the character unchanged.

showString :: String -> ShowS #

utility function converting a String to a show function that simply prepends the string unchanged.

showParen :: Bool -> ShowS -> ShowS #

utility function that surrounds the inner show function with parentheses when the Bool parameter is True.

even :: Integral a => a -> Bool #

odd :: Integral a => a -> Bool #

(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #

raise a number to an integral power

gcd :: Integral a => a -> a -> a #

gcd x y is the non-negative factor of both x and y of which every common factor of x and y is also a factor; for example gcd 4 2 = 2, gcd (-4) 6 = 2, gcd 0 4 = 4. gcd 0 0 = 0. (That is, the common divisor that is "greatest" in the divisibility preordering.)

Note: Since for signed fixed-width integer types, abs minBound < 0, the result may be negative if one of the arguments is minBound (and necessarily is if the other is 0 or minBound) for such types.

lcm :: Integral a => a -> a -> a #

lcm x y is the smallest positive integer that both x and y divide.

(<&>) :: Functor f => f a -> (a -> b) -> f b infixl 1 #

Flipped version of <$>.

(<&>) = flip fmap

Examples

Expand

Apply (+1) to a list, a Just and a Right:

>>> Just 2 <&> (+1)
Just 3
>>> [1,2,3] <&> (+1)
[2,3,4]
>>> Right 3 <&> (+1)
Right 4

Since: base-4.11.0.0

($>) :: Functor f => f a -> b -> f b infixl 4 #

Flipped version of <$.

Examples

Expand

Replace the contents of a Maybe Int with a constant String:

>>> Nothing $> "foo"
Nothing
>>> Just 90210 $> "foo"
Just "foo"

Replace the contents of an Either Int Int with a constant String, resulting in an Either Int String:

>>> Left 8675309 $> "foo"
Left 8675309
>>> Right 8675309 $> "foo"
Right "foo"

Replace each element of a list with a constant String:

>>> [1,2,3] $> "foo"
["foo","foo","foo"]

Replace the second element of a pair with a constant String:

>>> (1,2) $> "foo"
(1,"foo")

Since: base-4.7.0.0

on :: (b -> b -> c) -> (a -> b) -> a -> a -> c infixl 0 #

on b u x y runs the binary function b on the results of applying unary function u to two arguments x and y. From the opposite perspective, it transforms two inputs and combines the outputs.

(op `on` f) x y = f x `op` f y

Examples

Expand
>>> sortBy (compare `on` length) [[0, 1, 2], [0, 1], [], [0]]
[[],[0],[0,1],[0,1,2]]
>>> ((+) `on` length) [1, 2, 3] [-1]
4
>>> ((,) `on` (*2)) 2 3
(4,6)

Algebraic properties

Expand
  • (*) `on` id = (*) -- (if (*) ∉ {⊥, const ⊥})
  • ((*) `on` f) `on` g = (*) `on` (f . g)
  • flip on f . flip on g = flip on (g . f)

(&) :: a -> (a -> b) -> b infixl 1 #

& is a reverse application operator. This provides notational convenience. Its precedence is one higher than that of the forward application operator $, which allows & to be nested in $.

This is a version of flip id, where id is specialized from a -> a to (a -> b) -> (a -> b) which by the associativity of (->) is (a -> b) -> a -> b. flipping this yields a -> (a -> b) -> b which is the type signature of &

Examples

Expand
>>> 5 & (+1) & show
"6"
>>> sqrt $ [1 / n^2 | n <- [1..1000]] & sum & (*6)
3.1406380562059946

Since: base-4.8.0.0

applyWhen :: Bool -> (a -> a) -> a -> a #

applyWhen applies a function to a value if a condition is true, otherwise, it returns the value unchanged.

It is equivalent to flip (bool id).

Examples

Expand
>>> map (\x -> applyWhen (odd x) (*2) x) [1..10]
[2,2,6,4,10,6,14,8,18,10]
>>> map (\x -> applyWhen (length x > 6) ((++ "...") . take 3) x) ["Hi!", "This is amazing", "Hope you're doing well today!", ":D"]
["Hi!","Thi...","Hop...",":D"]

Algebraic properties

Expand

Since: base-4.18.0.0

data ReadP a #

Instances

Instances details
Alternative ReadP

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadP

Methods

empty :: ReadP a #

(<|>) :: ReadP a -> ReadP a -> ReadP a #

some :: ReadP a -> ReadP [a] #

many :: ReadP a -> ReadP [a] #

Applicative ReadP

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadP

Methods

pure :: a -> ReadP a #

(<*>) :: ReadP (a -> b) -> ReadP a -> ReadP b #

liftA2 :: (a -> b -> c) -> ReadP a -> ReadP b -> ReadP c #

(*>) :: ReadP a -> ReadP b -> ReadP b #

(<*) :: ReadP a -> ReadP b -> ReadP a #

Functor ReadP

Since: base-2.1

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadP

Methods

fmap :: (a -> b) -> ReadP a -> ReadP b #

(<$) :: a -> ReadP b -> ReadP a #

Monad ReadP

Since: base-2.1

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadP

Methods

(>>=) :: ReadP a -> (a -> ReadP b) -> ReadP b #

(>>) :: ReadP a -> ReadP b -> ReadP b #

return :: a -> ReadP a #

MonadPlus ReadP

Since: base-2.1

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadP

Methods

mzero :: ReadP a #

mplus :: ReadP a -> ReadP a -> ReadP a #

MonadFail ReadP

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadP

Methods

fail :: String -> ReadP a #

type ReadS a = String -> [(a, String)] #

A parser for a type a, represented as a function that takes a String and returns a list of possible parses as (a,String) pairs.

Note that this kind of backtracking parser is very inefficient; reading a large structure may be quite slow (cf ReadP).

readP_to_S :: ReadP a -> ReadS a #

Converts a parser into a Haskell ReadS-style function. This is the main way in which you can "run" a ReadP parser: the expanded type is readP_to_S :: ReadP a -> String -> [(a,String)]

readS_to_P :: ReadS a -> ReadP a #

Converts a Haskell ReadS-style function into a parser. Warning: This introduces local backtracking in the resulting parser, and therefore a possible inefficiency.

lex :: ReadS String #

The lex function reads a single lexeme from the input, discarding initial white space, and returning the characters that constitute the lexeme. If the input string contains only white space, lex returns a single successful `lexeme' consisting of the empty string. (Thus lex "" = [("","")].) If there is no legal lexeme at the beginning of the input string, lex fails (i.e. returns []).

This lexer is not completely faithful to the Haskell lexical syntax in the following respects:

  • Qualified names are not handled properly
  • Octal and hexadecimal numerics are not recognized as a single token
  • Comments are not treated properly

data ReadPrec a #

Instances

Instances details
Alternative ReadPrec

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadPrec

Methods

empty :: ReadPrec a #

(<|>) :: ReadPrec a -> ReadPrec a -> ReadPrec a #

some :: ReadPrec a -> ReadPrec [a] #

many :: ReadPrec a -> ReadPrec [a] #

Applicative ReadPrec

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadPrec

Methods

pure :: a -> ReadPrec a #

(<*>) :: ReadPrec (a -> b) -> ReadPrec a -> ReadPrec b #

liftA2 :: (a -> b -> c) -> ReadPrec a -> ReadPrec b -> ReadPrec c #

(*>) :: ReadPrec a -> ReadPrec b -> ReadPrec b #

(<*) :: ReadPrec a -> ReadPrec b -> ReadPrec a #

Functor ReadPrec

Since: base-2.1

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadPrec

Methods

fmap :: (a -> b) -> ReadPrec a -> ReadPrec b #

(<$) :: a -> ReadPrec b -> ReadPrec a #

Monad ReadPrec

Since: base-2.1

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadPrec

Methods

(>>=) :: ReadPrec a -> (a -> ReadPrec b) -> ReadPrec b #

(>>) :: ReadPrec a -> ReadPrec b -> ReadPrec b #

return :: a -> ReadPrec a #

MonadPlus ReadPrec

Since: base-2.1

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadPrec

Methods

mzero :: ReadPrec a #

mplus :: ReadPrec a -> ReadPrec a -> ReadPrec a #

MonadFail ReadPrec

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadPrec

Methods

fail :: String -> ReadPrec a #

readParen :: Bool -> ReadS a -> ReadS a #

readParen True p parses what p parses, but surrounded with parentheses.

readParen False p parses what p parses, but optionally surrounded with parentheses.

data ThreadStatus #

The current status of a thread

Constructors

ThreadRunning

the thread is currently runnable or running

ThreadFinished

the thread has finished

ThreadBlocked BlockReason

the thread is blocked on some resource

ThreadDied

the thread received an uncaught exception

Instances

Instances details
Show ThreadStatus

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Eq ThreadStatus

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Ord ThreadStatus

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

data BlockReason #

Constructors

BlockedOnMVar

blocked on MVar

BlockedOnBlackHole

blocked on a computation in progress by another thread

BlockedOnException

blocked in throwTo

BlockedOnSTM

blocked in retry in an STM transaction

BlockedOnForeignCall

currently in a foreign call

BlockedOnOther

blocked on some other resource. Without -threaded, I/O and threadDelay show up as BlockedOnOther, with -threaded they show up as BlockedOnMVar.

Instances

Instances details
Show BlockReason

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Eq BlockReason

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Ord BlockReason

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

data TVar a #

Shared memory locations that support atomic memory transactions.

Constructors

TVar (TVar# RealWorld a) 

Instances

Instances details
Eq (TVar a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Methods

(==) :: TVar a -> TVar a -> Bool #

(/=) :: TVar a -> TVar a -> Bool #

threadStatus :: ThreadId -> IO ThreadStatus #

Query the current execution status of a thread.

data PrimMVar #

newStablePtrPrimMVar :: MVar a -> IO (StablePtr PrimMVar) #

Make a StablePtr that can be passed to the C function hs_try_putmvar(). The RTS wants a StablePtr to the underlying MVar#, but a StablePtr# can only refer to lifted types, so we have to cheat by coercing.

reads :: Read a => ReadS a #

equivalent to readsPrec with a precedence of 0.

readEither :: Read a => String -> Either String a #

Parse a string using the Read instance. Succeeds if there is exactly one valid result. A Left value indicates a parse error.

>>> readEither "123" :: Either String Int
Right 123
>>> readEither "hello" :: Either String Int
Left "Prelude.read: no parse"

Since: base-4.6.0.0

readMaybe :: Read a => String -> Maybe a #

Parse a string using the Read instance. Succeeds if there is exactly one valid result.

>>> readMaybe "123" :: Maybe Int
Just 123
>>> readMaybe "hello" :: Maybe Int
Nothing

Since: base-4.6.0.0

read :: Read a => String -> a #

The read function reads input from a string, which must be completely consumed by the input process. read fails with an error if the parse is unsuccessful, and it is therefore discouraged from being used in real applications. Use readMaybe or readEither for safe alternatives.

>>> read "123" :: Int
123
>>> read "hello" :: Int
*** Exception: Prelude.read: no parse

newtype Alt (f :: k -> Type) (a :: k) #

Monoid under <|>.

Alt l <> Alt r == Alt (l <|> r)

Examples

Expand
>>> Alt (Just 12) <> Alt (Just 24)
Alt {getAlt = Just 12}
>>> Alt Nothing <> Alt (Just 24)
Alt {getAlt = Just 24}

Since: base-4.8.0.0

Constructors

Alt 

Fields

Instances

Instances details
Generic1 (Alt f :: k -> Type) 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep1 (Alt f :: k -> Type)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 (Alt f :: k -> Type) = D1 ('MetaData "Alt" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Alt" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAlt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))

Methods

from1 :: forall (a :: k). Alt f a -> Rep1 (Alt f) a #

to1 :: forall (a :: k). Rep1 (Alt f) a -> Alt f a #

MonadZip f => MonadZip (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Control.Monad.Zip

Methods

mzip :: Alt f a -> Alt f b -> Alt f (a, b) #

mzipWith :: (a -> b -> c) -> Alt f a -> Alt f b -> Alt f c #

munzip :: Alt f (a, b) -> (Alt f a, Alt f b) #

Foldable1 f => Foldable1 (Alt f)

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => Alt f m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Alt f a -> m #

foldMap1' :: Semigroup m => (a -> m) -> Alt f a -> m #

toNonEmpty :: Alt f a -> NonEmpty a #

maximum :: Ord a => Alt f a -> a #

minimum :: Ord a => Alt f a -> a #

head :: Alt f a -> a #

last :: Alt f a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> Alt f a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> Alt f a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> Alt f a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> Alt f a -> b #

Contravariant f => Contravariant (Alt f) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> Alt f a -> Alt f a' #

(>$) :: b -> Alt f b -> Alt f a #

Alternative f => Alternative (Alt f)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

empty :: Alt f a #

(<|>) :: Alt f a -> Alt f a -> Alt f a #

some :: Alt f a -> Alt f [a] #

many :: Alt f a -> Alt f [a] #

Applicative f => Applicative (Alt f)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

pure :: a -> Alt f a #

(<*>) :: Alt f (a -> b) -> Alt f a -> Alt f b #

liftA2 :: (a -> b -> c) -> Alt f a -> Alt f b -> Alt f c #

(*>) :: Alt f a -> Alt f b -> Alt f b #

(<*) :: Alt f a -> Alt f b -> Alt f a #

Functor f => Functor (Alt f)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Alt f a -> Alt f b #

(<$) :: a -> Alt f b -> Alt f a #

Monad f => Monad (Alt f)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(>>=) :: Alt f a -> (a -> Alt f b) -> Alt f b #

(>>) :: Alt f a -> Alt f b -> Alt f b #

return :: a -> Alt f a #

MonadPlus f => MonadPlus (Alt f)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

mzero :: Alt f a #

mplus :: Alt f a -> Alt f a -> Alt f a #

MonadFix f => MonadFix (Alt f)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> Alt f a) -> Alt f a #

Foldable f => Foldable (Alt f)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Alt f m -> m #

foldMap :: Monoid m => (a -> m) -> Alt f a -> m #

foldMap' :: Monoid m => (a -> m) -> Alt f a -> m #

foldr :: (a -> b -> b) -> b -> Alt f a -> b #

foldr' :: (a -> b -> b) -> b -> Alt f a -> b #

foldl :: (b -> a -> b) -> b -> Alt f a -> b #

foldl' :: (b -> a -> b) -> b -> Alt f a -> b #

foldr1 :: (a -> a -> a) -> Alt f a -> a #

foldl1 :: (a -> a -> a) -> Alt f a -> a #

toList :: Alt f a -> [a] #

null :: Alt f a -> Bool #

length :: Alt f a -> Int #

elem :: Eq a => a -> Alt f a -> Bool #

maximum :: Ord a => Alt f a -> a #

minimum :: Ord a => Alt f a -> a #

sum :: Num a => Alt f a -> a #

product :: Num a => Alt f a -> a #

Traversable f => Traversable (Alt f)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Alt f a -> f0 (Alt f b) #

sequenceA :: Applicative f0 => Alt f (f0 a) -> f0 (Alt f a) #

mapM :: Monad m => (a -> m b) -> Alt f a -> m (Alt f b) #

sequence :: Monad m => Alt f (m a) -> m (Alt f a) #

Alternative f => Monoid (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

mempty :: Alt f a #

mappend :: Alt f a -> Alt f a -> Alt f a #

mconcat :: [Alt f a] -> Alt f a #

Alternative f => Semigroup (Alt f a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(<>) :: Alt f a -> Alt f a -> Alt f a #

sconcat :: NonEmpty (Alt f a) -> Alt f a #

stimes :: Integral b => b -> Alt f a -> Alt f a #

(Data (f a), Data a, Typeable f) => Data (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Alt f a -> c (Alt f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Alt f a) #

toConstr :: Alt f a -> Constr #

dataTypeOf :: Alt f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Alt f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Alt f a)) #

gmapT :: (forall b. Data b => b -> b) -> Alt f a -> Alt f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Alt f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Alt f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) #

Enum (f a) => Enum (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

succ :: Alt f a -> Alt f a #

pred :: Alt f a -> Alt f a #

toEnum :: Int -> Alt f a #

fromEnum :: Alt f a -> Int #

enumFrom :: Alt f a -> [Alt f a] #

enumFromThen :: Alt f a -> Alt f a -> [Alt f a] #

enumFromTo :: Alt f a -> Alt f a -> [Alt f a] #

enumFromThenTo :: Alt f a -> Alt f a -> Alt f a -> [Alt f a] #

Generic (Alt f a) 
Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Associated Types

type Rep (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep (Alt f a) = D1 ('MetaData "Alt" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Alt" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAlt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a))))

Methods

from :: Alt f a -> Rep (Alt f a) x #

to :: Rep (Alt f a) x -> Alt f a #

Num (f a) => Num (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(+) :: Alt f a -> Alt f a -> Alt f a #

(-) :: Alt f a -> Alt f a -> Alt f a #

(*) :: Alt f a -> Alt f a -> Alt f a #

negate :: Alt f a -> Alt f a #

abs :: Alt f a -> Alt f a #

signum :: Alt f a -> Alt f a #

fromInteger :: Integer -> Alt f a #

Read (f a) => Read (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

readsPrec :: Int -> ReadS (Alt f a) #

readList :: ReadS [Alt f a] #

readPrec :: ReadPrec (Alt f a) #

readListPrec :: ReadPrec [Alt f a] #

Show (f a) => Show (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

showsPrec :: Int -> Alt f a -> ShowS #

show :: Alt f a -> String #

showList :: [Alt f a] -> ShowS #

Eq (f a) => Eq (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(==) :: Alt f a -> Alt f a -> Bool #

(/=) :: Alt f a -> Alt f a -> Bool #

Ord (f a) => Ord (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

compare :: Alt f a -> Alt f a -> Ordering #

(<) :: Alt f a -> Alt f a -> Bool #

(<=) :: Alt f a -> Alt f a -> Bool #

(>) :: Alt f a -> Alt f a -> Bool #

(>=) :: Alt f a -> Alt f a -> Bool #

max :: Alt f a -> Alt f a -> Alt f a #

min :: Alt f a -> Alt f a -> Alt f a #

type Rep1 (Alt f :: k -> Type)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep1 (Alt f :: k -> Type) = D1 ('MetaData "Alt" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Alt" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAlt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))
type Rep (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

type Rep (Alt f a) = D1 ('MetaData "Alt" "GHC.Internal.Data.Semigroup.Internal" "ghc-internal" 'True) (C1 ('MetaCons "Alt" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAlt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a))))

newtype Ap (f :: k -> Type) (a :: k) #

This data type witnesses the lifting of a Monoid into an Applicative pointwise.

Examples

Expand
>>> Ap (Just [1, 2, 3]) <> Ap Nothing
Ap {getAp = Nothing}
>>> Ap [Sum 10, Sum 20] <> Ap [Sum 1, Sum 2]
Ap {getAp = [Sum {getSum = 11},Sum {getSum = 12},Sum {getSum = 21},Sum {getSum = 22}]}

Since: base-4.12.0.0

Constructors

Ap 

Fields

Instances

Instances details
Generic1 (Ap f :: k -> Type) 
Instance details

Defined in GHC.Internal.Data.Monoid

Associated Types

type Rep1 (Ap f :: k -> Type)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep1 (Ap f :: k -> Type) = D1 ('MetaData "Ap" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "Ap" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAp") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))

Methods

from1 :: forall (a :: k). Ap f a -> Rep1 (Ap f) a #

to1 :: forall (a :: k). Rep1 (Ap f) a -> Ap f a #

Foldable1 f => Foldable1 (Ap f)

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => Ap f m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Ap f a -> m #

foldMap1' :: Semigroup m => (a -> m) -> Ap f a -> m #

toNonEmpty :: Ap f a -> NonEmpty a #

maximum :: Ord a => Ap f a -> a #

minimum :: Ord a => Ap f a -> a #

head :: Ap f a -> a #

last :: Ap f a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> Ap f a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> Ap f a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> Ap f a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> Ap f a -> b #

Alternative f => Alternative (Ap f)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

empty :: Ap f a #

(<|>) :: Ap f a -> Ap f a -> Ap f a #

some :: Ap f a -> Ap f [a] #

many :: Ap f a -> Ap f [a] #

Applicative f => Applicative (Ap f)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

pure :: a -> Ap f a #

(<*>) :: Ap f (a -> b) -> Ap f a -> Ap f b #

liftA2 :: (a -> b -> c) -> Ap f a -> Ap f b -> Ap f c #

(*>) :: Ap f a -> Ap f b -> Ap f b #

(<*) :: Ap f a -> Ap f b -> Ap f a #

Functor f => Functor (Ap f)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

fmap :: (a -> b) -> Ap f a -> Ap f b #

(<$) :: a -> Ap f b -> Ap f a #

Monad f => Monad (Ap f)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(>>=) :: Ap f a -> (a -> Ap f b) -> Ap f b #

(>>) :: Ap f a -> Ap f b -> Ap f b #

return :: a -> Ap f a #

MonadPlus f => MonadPlus (Ap f)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

mzero :: Ap f a #

mplus :: Ap f a -> Ap f a -> Ap f a #

MonadFail f => MonadFail (Ap f)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

fail :: String -> Ap f a #

MonadFix f => MonadFix (Ap f)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fix

Methods

mfix :: (a -> Ap f a) -> Ap f a #

Foldable f => Foldable (Ap f)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => Ap f m -> m #

foldMap :: Monoid m => (a -> m) -> Ap f a -> m #

foldMap' :: Monoid m => (a -> m) -> Ap f a -> m #

foldr :: (a -> b -> b) -> b -> Ap f a -> b #

foldr' :: (a -> b -> b) -> b -> Ap f a -> b #

foldl :: (b -> a -> b) -> b -> Ap f a -> b #

foldl' :: (b -> a -> b) -> b -> Ap f a -> b #

foldr1 :: (a -> a -> a) -> Ap f a -> a #

foldl1 :: (a -> a -> a) -> Ap f a -> a #

toList :: Ap f a -> [a] #

null :: Ap f a -> Bool #

length :: Ap f a -> Int #

elem :: Eq a => a -> Ap f a -> Bool #

maximum :: Ord a => Ap f a -> a #

minimum :: Ord a => Ap f a -> a #

sum :: Num a => Ap f a -> a #

product :: Num a => Ap f a -> a #

Traversable f => Traversable (Ap f)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Ap f a -> f0 (Ap f b) #

sequenceA :: Applicative f0 => Ap f (f0 a) -> f0 (Ap f a) #

mapM :: Monad m => (a -> m b) -> Ap f a -> m (Ap f b) #

sequence :: Monad m => Ap f (m a) -> m (Ap f a) #

(Applicative f, Monoid a) => Monoid (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

mempty :: Ap f a #

mappend :: Ap f a -> Ap f a -> Ap f a #

mconcat :: [Ap f a] -> Ap f a #

(Applicative f, Semigroup a) => Semigroup (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(<>) :: Ap f a -> Ap f a -> Ap f a #

sconcat :: NonEmpty (Ap f a) -> Ap f a #

stimes :: Integral b => b -> Ap f a -> Ap f a #

(Data (f a), Data a, Typeable f) => Data (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ap f a -> c (Ap f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ap f a) #

toConstr :: Ap f a -> Constr #

dataTypeOf :: Ap f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ap f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ap f a)) #

gmapT :: (forall b. Data b => b -> b) -> Ap f a -> Ap f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Ap f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ap f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) #

(Applicative f, Bounded a) => Bounded (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

minBound :: Ap f a #

maxBound :: Ap f a #

Enum (f a) => Enum (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

succ :: Ap f a -> Ap f a #

pred :: Ap f a -> Ap f a #

toEnum :: Int -> Ap f a #

fromEnum :: Ap f a -> Int #

enumFrom :: Ap f a -> [Ap f a] #

enumFromThen :: Ap f a -> Ap f a -> [Ap f a] #

enumFromTo :: Ap f a -> Ap f a -> [Ap f a] #

enumFromThenTo :: Ap f a -> Ap f a -> Ap f a -> [Ap f a] #

Generic (Ap f a) 
Instance details

Defined in GHC.Internal.Data.Monoid

Associated Types

type Rep (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep (Ap f a) = D1 ('MetaData "Ap" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "Ap" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAp") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a))))

Methods

from :: Ap f a -> Rep (Ap f a) x #

to :: Rep (Ap f a) x -> Ap f a #

(Applicative f, Num a) => Num (Ap f a)

Note that even if the underlying Num and Applicative instances are lawful, for most Applicatives, this instance will not be lawful. If you use this instance with the list Applicative, the following customary laws will not hold:

Commutativity:

>>> Ap [10,20] + Ap [1,2]
Ap {getAp = [11,12,21,22]}
>>> Ap [1,2] + Ap [10,20]
Ap {getAp = [11,21,12,22]}

Additive inverse:

>>> Ap [] + negate (Ap [])
Ap {getAp = []}
>>> fromInteger 0 :: Ap [] Int
Ap {getAp = [0]}

Distributivity:

>>> Ap [1,2] * (3 + 4)
Ap {getAp = [7,14]}
>>> (Ap [1,2] * 3) + (Ap [1,2] * 4)
Ap {getAp = [7,11,10,14]}

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(+) :: Ap f a -> Ap f a -> Ap f a #

(-) :: Ap f a -> Ap f a -> Ap f a #

(*) :: Ap f a -> Ap f a -> Ap f a #

negate :: Ap f a -> Ap f a #

abs :: Ap f a -> Ap f a #

signum :: Ap f a -> Ap f a #

fromInteger :: Integer -> Ap f a #

Read (f a) => Read (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

readsPrec :: Int -> ReadS (Ap f a) #

readList :: ReadS [Ap f a] #

readPrec :: ReadPrec (Ap f a) #

readListPrec :: ReadPrec [Ap f a] #

Show (f a) => Show (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

showsPrec :: Int -> Ap f a -> ShowS #

show :: Ap f a -> String #

showList :: [Ap f a] -> ShowS #

Eq (f a) => Eq (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(==) :: Ap f a -> Ap f a -> Bool #

(/=) :: Ap f a -> Ap f a -> Bool #

Ord (f a) => Ord (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

compare :: Ap f a -> Ap f a -> Ordering #

(<) :: Ap f a -> Ap f a -> Bool #

(<=) :: Ap f a -> Ap f a -> Bool #

(>) :: Ap f a -> Ap f a -> Bool #

(>=) :: Ap f a -> Ap f a -> Bool #

max :: Ap f a -> Ap f a -> Ap f a #

min :: Ap f a -> Ap f a -> Ap f a #

type Rep1 (Ap f :: k -> Type)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep1 (Ap f :: k -> Type) = D1 ('MetaData "Ap" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "Ap" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAp") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))
type Rep (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

type Rep (Ap f a) = D1 ('MetaData "Ap" "GHC.Internal.Data.Monoid" "ghc-internal" 'True) (C1 ('MetaCons "Ap" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAp") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a))))

foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b #

Right-to-left monadic fold over the elements of a structure.

Given a structure t with elements (a, b, c, ..., x, y), the result of a fold with an operator function f is equivalent to:

foldrM f z t = do
    yy <- f y z
    xx <- f x yy
    ...
    bb <- f b cc
    aa <- f a bb
    return aa -- Just @return z@ when the structure is empty

For a Monad m, given two functions f1 :: a -> m b and f2 :: b -> m c, their Kleisli composition (f1 >=> f2) :: a -> m c is defined by:

(f1 >=> f2) a = f1 a >>= f2

Another way of thinking about foldrM is that it amounts to an application to z of a Kleisli composition:

foldrM f z t = f y >=> f x >=> ... >=> f b >=> f a $ z

The monadic effects of foldrM are sequenced from right to left, and e.g. folds of infinite lists will diverge.

If at some step the bind operator (>>=) short-circuits (as with, e.g., mzero in a MonadPlus), the evaluated effects will be from a tail of the element sequence. If you want to evaluate the monadic effects in left-to-right order, or perhaps be able to short-circuit after an initial sequence of elements, you'll need to use foldlM instead.

If the monadic effects don't short-circuit, the outermost application of f is to the leftmost element a, so that, ignoring effects, the result looks like a right fold:

a `f` (b `f` (c `f` (... (x `f` (y `f` z))))).

Examples

Expand

Basic usage:

>>> let f i acc = do { print i ; return $ i : acc }
>>> foldrM f [] [0..3]
3
2
1
0
[0,1,2,3]

foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #

Left-to-right monadic fold over the elements of a structure.

Given a structure t with elements (a, b, ..., w, x, y), the result of a fold with an operator function f is equivalent to:

foldlM f z t = do
    aa <- f z a
    bb <- f aa b
    ...
    xx <- f ww x
    yy <- f xx y
    return yy -- Just @return z@ when the structure is empty

For a Monad m, given two functions f1 :: a -> m b and f2 :: b -> m c, their Kleisli composition (f1 >=> f2) :: a -> m c is defined by:

(f1 >=> f2) a = f1 a >>= f2

Another way of thinking about foldlM is that it amounts to an application to z of a Kleisli composition:

foldlM f z t =
    flip f a >=> flip f b >=> ... >=> flip f x >=> flip f y $ z

The monadic effects of foldlM are sequenced from left to right.

If at some step the bind operator (>>=) short-circuits (as with, e.g., mzero in a MonadPlus), the evaluated effects will be from an initial segment of the element sequence. If you want to evaluate the monadic effects in right-to-left order, or perhaps be able to short-circuit after processing a tail of the sequence of elements, you'll need to use foldrM instead.

If the monadic effects don't short-circuit, the outermost application of f is to the rightmost element y, so that, ignoring effects, the result looks like a left fold:

((((z `f` a) `f` b) ... `f` w) `f` x) `f` y

Examples

Expand

Basic usage:

>>> let f a e = do { print e ; return $ e : a }
>>> foldlM f [] [0..3]
0
1
2
3
[3,2,1,0]

traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () #

Map each element of a structure to an Applicative action, evaluate these actions from left to right, and ignore the results. For a version that doesn't ignore the results see traverse.

traverse_ is just like mapM_, but generalised to Applicative actions.

Examples

Expand

Basic usage:

>>> traverse_ print ["Hello", "world", "!"]
"Hello"
"world"
"!"

for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () #

for_ is traverse_ with its arguments flipped. For a version that doesn't ignore the results see for. This is forM_ generalised to Applicative actions.

for_ is just like forM_, but generalised to Applicative actions.

Examples

Expand

Basic usage:

>>> for_ [1..4] print
1
2
3
4

sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f () #

Evaluate each action in the structure from left to right, and ignore the results. For a version that doesn't ignore the results see sequenceA.

sequenceA_ is just like sequence_, but generalised to Applicative actions.

Examples

Expand

Basic usage:

>>> sequenceA_ [print "Hello", print "world", print "!"]
"Hello"
"world"
"!"

newtype STM a #

A monad supporting atomic memory transactions.

Constructors

STM (State# RealWorld -> (# State# RealWorld, a #)) 

Instances

Instances details
Alternative STM

Takes the first non-retrying STM action.

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Methods

empty :: STM a #

(<|>) :: STM a -> STM a -> STM a #

some :: STM a -> STM [a] #

many :: STM a -> STM [a] #

Applicative STM

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Methods

pure :: a -> STM a #

(<*>) :: STM (a -> b) -> STM a -> STM b #

liftA2 :: (a -> b -> c) -> STM a -> STM b -> STM c #

(*>) :: STM a -> STM b -> STM b #

(<*) :: STM a -> STM b -> STM a #

Functor STM

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Methods

fmap :: (a -> b) -> STM a -> STM b #

(<$) :: a -> STM b -> STM a #

Monad STM

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Methods

(>>=) :: STM a -> (a -> STM b) -> STM b #

(>>) :: STM a -> STM b -> STM b #

return :: a -> STM a #

MonadPlus STM

Takes the first non-retrying STM action.

Since: base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Methods

mzero :: STM a #

mplus :: STM a -> STM a -> STM a #

Monoid a => Monoid (STM a)

Since: base-4.17.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Methods

mempty :: STM a #

mappend :: STM a -> STM a -> STM a #

mconcat :: [STM a] -> STM a #

Semigroup a => Semigroup (STM a)

Since: base-4.17.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Methods

(<>) :: STM a -> STM a -> STM a #

sconcat :: NonEmpty (STM a) -> STM a #

stimes :: Integral b => b -> STM a -> STM a #

numCapabilities :: Int #

the value passed to the +RTS -N flag. This is the number of Haskell threads that can run truly simultaneously at any given time, and is typically set to the number of physical processor cores on the machine.

Strictly speaking it is better to use getNumCapabilities, because the number of capabilities might vary at runtime.

getNumProcessors :: IO Int #

Returns the number of CPUs that the machine has

Since: base-4.5.0.0

numSparks :: IO Int #

Returns the number of sparks currently in the local spark pool

labelThread :: ThreadId -> String -> IO () #

labelThread stores a string as identifier for this thread. This identifier will be used in the debugging output to make distinction of different threads easier (otherwise you only have the thread state object's address in the heap). It also emits an event to the RTS eventlog.

pseq :: a -> b -> b infixr 0 #

par :: a -> b -> b infixr 0 #

runSparks :: IO () #

Internal function used by the RTS to run sparks.

listThreads :: IO [ThreadId] #

List the Haskell threads of the current process.

Since: base-4.18

unsafeIOToSTM :: IO a -> STM a #

Unsafely performs IO in the STM monad. Beware: this is a highly dangerous thing to do.

  • The STM implementation will often run transactions multiple times, so you need to be prepared for this if your IO has any side effects.
  • The STM implementation will abort transactions that are known to be invalid and need to be restarted. This may happen in the middle of unsafeIOToSTM, so make sure you don't acquire any resources that need releasing (exception handlers are ignored when aborting the transaction). That includes doing any IO using Handles, for example. Getting this wrong will probably lead to random deadlocks.
  • The transaction may have seen an inconsistent view of memory when the IO runs. Invariants that you expect to be true throughout your program may not be true inside a transaction, due to the way transactions are implemented. Normally this wouldn't be visible to the programmer, but using unsafeIOToSTM can expose it.

atomically :: STM a -> IO a #

Perform a series of STM actions atomically.

Using atomically inside an unsafePerformIO or unsafeInterleaveIO subverts some of guarantees that STM provides. It makes it possible to run a transaction inside of another transaction, depending on when the thunk is evaluated. If a nested transaction is attempted, an exception is thrown by the runtime. It is possible to safely use atomically inside unsafePerformIO or unsafeInterleaveIO, but the typechecker does not rule out programs that may attempt nested transactions, meaning that the programmer must take special care to prevent these.

However, there are functions for creating transactional variables that can always be safely called in unsafePerformIO. See: newTVarIO, newTChanIO, newBroadcastTChanIO, newTQueueIO, newTBQueueIO, and newTMVarIO.

Using unsafePerformIO inside of atomically is also dangerous but for different reasons. See unsafeIOToSTM for more on this.

retry :: STM a #

Retry execution of the current memory transaction because it has seen values in TVars which mean that it should not continue (e.g. the TVars represent a shared buffer that is now empty). The implementation may block the thread until one of the TVars that it has read from has been updated. (GHC only)

throwSTM :: Exception e => e -> STM a #

A variant of throw that can only be used within the STM monad.

Throwing an exception in STM aborts the transaction and propagates the exception. If the exception is caught via catchSTM, only the changes enclosed by the catch are rolled back; changes made outside of catchSTM persist.

If the exception is not caught inside of the STM, it is re-thrown by atomically, and the entire STM is rolled back.

Although throwSTM has a type that is an instance of the type of throw, the two functions are subtly different:

throw e    `seq` x  ===> throw e
throwSTM e `seq` x  ===> x

The first example will cause the exception e to be raised, whereas the second one won't. In fact, throwSTM will only cause an exception to be raised when it is used within the STM monad. The throwSTM variant should be used in preference to throw to raise an exception within the STM monad because it guarantees ordering with respect to other STM operations, whereas throw does not.

catchSTM :: Exception e => STM a -> (e -> STM a) -> STM a #

Exception handling within STM actions.

catchSTM m f catches any exception thrown by m using throwSTM, using the function f to handle the exception. If an exception is thrown, any changes made by m are rolled back, but changes prior to m persist.

newTVar :: a -> STM (TVar a) #

Create a new TVar holding a value supplied

newTVarIO :: a -> IO (TVar a) #

IO version of newTVar. This is useful for creating top-level TVars using unsafePerformIO, because using atomically inside unsafePerformIO isn't possible.

readTVarIO :: TVar a -> IO a #

Return the current value stored in a TVar. This is equivalent to

 readTVarIO = atomically . readTVar

but works much faster, because it doesn't perform a complete transaction, it just reads the current value of the TVar.

readTVar :: TVar a -> STM a #

Return the current value stored in a TVar.

writeTVar :: TVar a -> a -> STM () #

Write the supplied value into a TVar.

type Signal = CInt #

registerDelay :: Int -> IO (TVar Bool) #

Switch the value of returned TVar from initial value False to True after a given number of microseconds. The caveats associated with threadDelay also apply.

Be careful not to exceed maxBound :: Int, which on 32-bit machines is only 2147483647 μs, less than 36 minutes.

type family Item l #

The Item type function returns the type of items of the structure l.

Instances

Instances details
type Item ByteArray 
Instance details

Defined in Data.Array.Byte

type Item Version 
Instance details

Defined in GHC.Internal.IsList

type Item CallStack 
Instance details

Defined in GHC.Internal.IsList

type Item (NonEmpty a) 
Instance details

Defined in GHC.Internal.IsList

type Item (NonEmpty a) = a
type Item (ZipList a) 
Instance details

Defined in GHC.Internal.IsList

type Item (ZipList a) = a
type Item [a] 
Instance details

Defined in GHC.Internal.IsList

type Item [a] = a

sortWith :: Ord b => (a -> b) -> [a] -> [a] #

The sortWith function sorts a list of elements using the user supplied function to project something out of each element

In general if the user supplied function is expensive to compute then you should probably be using sortOn, as it only needs to compute it once for each element. sortWith, on the other hand must compute the mapping function for every comparison that it performs.

groupWith :: Ord b => (a -> b) -> [a] -> [[a]] #

The groupWith function uses the user supplied function which projects an element out of every list element in order to first sort the input list and then to form groups by equality on these projected elements

newtype ArrowMonad (a :: Type -> Type -> Type) b #

The ArrowApply class is equivalent to Monad: any monad gives rise to a Kleisli arrow, and any instance of ArrowApply defines a monad.

Constructors

ArrowMonad (a () b) 

Instances

Instances details
ArrowPlus a => Alternative (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

empty :: ArrowMonad a a0 #

(<|>) :: ArrowMonad a a0 -> ArrowMonad a a0 -> ArrowMonad a a0 #

some :: ArrowMonad a a0 -> ArrowMonad a [a0] #

many :: ArrowMonad a a0 -> ArrowMonad a [a0] #

Arrow a => Applicative (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

pure :: a0 -> ArrowMonad a a0 #

(<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b #

liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c #

(*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b #

(<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 #

Arrow a => Functor (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

fmap :: (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b #

(<$) :: a0 -> ArrowMonad a b -> ArrowMonad a a0 #

ArrowApply a => Monad (ArrowMonad a)

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

(>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b #

(>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b #

return :: a0 -> ArrowMonad a a0 #

(ArrowApply a, ArrowPlus a) => MonadPlus (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

mzero :: ArrowMonad a a0 #

mplus :: ArrowMonad a a0 -> ArrowMonad a a0 -> ArrowMonad a a0 #

class ArrowZero a => ArrowPlus (a :: Type -> Type -> Type) where #

A monoid on arrows.

Methods

(<+>) :: a b c -> a b c -> a b c infixr 5 #

An associative operation with identity zeroArrow.

Instances

Instances details
MonadPlus m => ArrowPlus (Kleisli m)

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

(<+>) :: Kleisli m b c -> Kleisli m b c -> Kleisli m b c #

class Arrow a => ArrowZero (a :: Type -> Type -> Type) where #

Methods

zeroArrow :: a b c #

Instances

Instances details
MonadPlus m => ArrowZero (Kleisli m)

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

zeroArrow :: Kleisli m b c #

newtype Kleisli (m :: Type -> Type) a b #

Kleisli arrows of a monad.

Constructors

Kleisli 

Fields

Instances

Instances details
Monad m => Category (Kleisli m :: Type -> Type -> Type)

Since: base-3.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

id :: Kleisli m a a #

(.) :: Kleisli m b c -> Kleisli m a b -> Kleisli m a c #

Generic1 (Kleisli m a :: Type -> Type) 
Instance details

Defined in GHC.Internal.Control.Arrow

Associated Types

type Rep1 (Kleisli m a :: Type -> Type)

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

type Rep1 (Kleisli m a :: Type -> Type) = D1 ('MetaData "Kleisli" "GHC.Internal.Control.Arrow" "ghc-internal" 'True) (C1 ('MetaCons "Kleisli" 'PrefixI 'True) (S1 ('MetaSel ('Just "runKleisli") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) ((FUN 'Many a :: Type -> Type) :.: Rec1 m)))

Methods

from1 :: Kleisli m a a0 -> Rep1 (Kleisli m a) a0 #

to1 :: Rep1 (Kleisli m a) a0 -> Kleisli m a a0 #

Monad m => Arrow (Kleisli m)

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

arr :: (b -> c) -> Kleisli m b c #

first :: Kleisli m b c -> Kleisli m (b, d) (c, d) #

second :: Kleisli m b c -> Kleisli m (d, b) (d, c) #

(***) :: Kleisli m b c -> Kleisli m b' c' -> Kleisli m (b, b') (c, c') #

(&&&) :: Kleisli m b c -> Kleisli m b c' -> Kleisli m b (c, c') #

Monad m => ArrowApply (Kleisli m)

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

app :: Kleisli m (Kleisli m b c, b) c #

Monad m => ArrowChoice (Kleisli m)

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

left :: Kleisli m b c -> Kleisli m (Either b d) (Either c d) #

right :: Kleisli m b c -> Kleisli m (Either d b) (Either d c) #

(+++) :: Kleisli m b c -> Kleisli m b' c' -> Kleisli m (Either b b') (Either c c') #

(|||) :: Kleisli m b d -> Kleisli m c d -> Kleisli m (Either b c) d #

MonadFix m => ArrowLoop (Kleisli m)

Beware that for many monads (those for which the >>= operation is strict) this instance will not satisfy the right-tightening law required by the ArrowLoop class.

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

loop :: Kleisli m (b, d) (c, d) -> Kleisli m b c #

MonadPlus m => ArrowPlus (Kleisli m)

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

(<+>) :: Kleisli m b c -> Kleisli m b c -> Kleisli m b c #

MonadPlus m => ArrowZero (Kleisli m)

Since: base-2.1

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

zeroArrow :: Kleisli m b c #

Alternative m => Alternative (Kleisli m a)

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

empty :: Kleisli m a a0 #

(<|>) :: Kleisli m a a0 -> Kleisli m a a0 -> Kleisli m a a0 #

some :: Kleisli m a a0 -> Kleisli m a [a0] #

many :: Kleisli m a a0 -> Kleisli m a [a0] #

Applicative m => Applicative (Kleisli m a)

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

pure :: a0 -> Kleisli m a a0 #

(<*>) :: Kleisli m a (a0 -> b) -> Kleisli m a a0 -> Kleisli m a b #

liftA2 :: (a0 -> b -> c) -> Kleisli m a a0 -> Kleisli m a b -> Kleisli m a c #

(*>) :: Kleisli m a a0 -> Kleisli m a b -> Kleisli m a b #

(<*) :: Kleisli m a a0 -> Kleisli m a b -> Kleisli m a a0 #

Functor m => Functor (Kleisli m a)

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

fmap :: (a0 -> b) -> Kleisli m a a0 -> Kleisli m a b #

(<$) :: a0 -> Kleisli m a b -> Kleisli m a a0 #

Monad m => Monad (Kleisli m a)

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

(>>=) :: Kleisli m a a0 -> (a0 -> Kleisli m a b) -> Kleisli m a b #

(>>) :: Kleisli m a a0 -> Kleisli m a b -> Kleisli m a b #

return :: a0 -> Kleisli m a a0 #

MonadPlus m => MonadPlus (Kleisli m a)

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

mzero :: Kleisli m a a0 #

mplus :: Kleisli m a a0 -> Kleisli m a a0 -> Kleisli m a a0 #

Generic (Kleisli m a b) 
Instance details

Defined in GHC.Internal.Control.Arrow

Associated Types

type Rep (Kleisli m a b)

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

type Rep (Kleisli m a b) = D1 ('MetaData "Kleisli" "GHC.Internal.Control.Arrow" "ghc-internal" 'True) (C1 ('MetaCons "Kleisli" 'PrefixI 'True) (S1 ('MetaSel ('Just "runKleisli") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (a -> m b))))

Methods

from :: Kleisli m a b -> Rep (Kleisli m a b) x #

to :: Rep (Kleisli m a b) x -> Kleisli m a b #

type Rep1 (Kleisli m a :: Type -> Type)

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

type Rep1 (Kleisli m a :: Type -> Type) = D1 ('MetaData "Kleisli" "GHC.Internal.Control.Arrow" "ghc-internal" 'True) (C1 ('MetaCons "Kleisli" 'PrefixI 'True) (S1 ('MetaSel ('Just "runKleisli") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) ((FUN 'Many a :: Type -> Type) :.: Rec1 m)))
type Rep (Kleisli m a b)

Since: base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

type Rep (Kleisli m a b) = D1 ('MetaData "Kleisli" "GHC.Internal.Control.Arrow" "ghc-internal" 'True) (C1 ('MetaCons "Kleisli" 'PrefixI 'True) (S1 ('MetaSel ('Just "runKleisli") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (a -> m b))))

returnA :: Arrow a => a b b #

The identity arrow, which plays the role of return in arrow notation.

(^>>) :: Arrow a => (b -> c) -> a c d -> a b d infixr 1 #

Precomposition with a pure function.

(>>^) :: Arrow a => a b c -> (c -> d) -> a b d infixr 1 #

Postcomposition with a pure function.

(<<^) :: Arrow a => a c d -> (b -> c) -> a b d infixr 1 #

Precomposition with a pure function (right-to-left variant).

(^<<) :: Arrow a => (c -> d) -> a b c -> a b d infixr 1 #

Postcomposition with a pure function (right-to-left variant).

leftApp :: ArrowApply a => a b c -> a (Either b d) (Either c d) #

Any instance of ArrowApply can be made into an instance of ArrowChoice by defining left = leftApp.

printf :: PrintfType r => String -> r #

Format a variable number of arguments with the C-style formatting string.

>>> printf "%s, %d, %.4f" "hello" 123 pi
hello, 123, 3.1416

The return value is either String or (IO a) (which should be (IO ()), but Haskell's type system makes this hard).

The format string consists of ordinary characters and conversion specifications, which specify how to format one of the arguments to printf in the output string. A format specification is introduced by the % character; this character can be self-escaped into the format string using %%. A format specification ends with a format character that provides the primary information about how to format the value. The rest of the conversion specification is optional. In order, one may have flag characters, a width specifier, a precision specifier, and type-specific modifier characters.

Unlike C printf(3), the formatting of this printf is driven by the argument type; formatting is type specific. The types formatted by printf "out of the box" are:

printf is also extensible to support other types: see below.

A conversion specification begins with the character %, followed by zero or more of the following flags:

-      left adjust (default is right adjust)
+      always use a sign (+ or -) for signed conversions
space  leading space for positive numbers in signed conversions
0      pad with zeros rather than spaces
#      use an \"alternate form\": see below

When both flags are given, - overrides 0 and + overrides space. A negative width specifier in a * conversion is treated as positive but implies the left adjust flag.

The "alternate form" for unsigned radix conversions is as in C printf(3):

%o           prefix with a leading 0 if needed
%x           prefix with a leading 0x if nonzero
%X           prefix with a leading 0X if nonzero
%b           prefix with a leading 0b if nonzero
%[eEfFgG]    ensure that the number contains a decimal point

Any flags are followed optionally by a field width:

num    field width
*      as num, but taken from argument list

The field width is a minimum, not a maximum: it will be expanded as needed to avoid mutilating a value.

Any field width is followed optionally by a precision:

.num   precision
.      same as .0
.*     as num, but taken from argument list

Negative precision is taken as 0. The meaning of the precision depends on the conversion type.

Integral    minimum number of digits to show
RealFloat   number of digits after the decimal point
String      maximum number of characters

The precision for Integral types is accomplished by zero-padding. If both precision and zero-pad are given for an Integral field, the zero-pad is ignored.

Any precision is followed optionally for Integral types by a width modifier; the only use of this modifier being to set the implicit size of the operand for conversion of a negative operand to unsigned:

hh     Int8
h      Int16
l      Int32
ll     Int64
L      Int64

The specification ends with a format character:

c      character               Integral
d      decimal                 Integral
o      octal                   Integral
x      hexadecimal             Integral
X      hexadecimal             Integral
b      binary                  Integral
u      unsigned decimal        Integral
f      floating point          RealFloat
F      floating point          RealFloat
g      general format float    RealFloat
G      general format float    RealFloat
e      exponent format float   RealFloat
E      exponent format float   RealFloat
s      string                  String
v      default format          any type

The "%v" specifier is provided for all built-in types, and should be provided for user-defined type formatters as well. It picks a "best" representation for the given type. For the built-in types the "%v" specifier is converted as follows:

c      Char
u      other unsigned Integral
d      other signed Integral
g      RealFloat
s      String

Mismatch between the argument types and the format string, as well as any other syntactic or semantic errors in the format string, will cause an exception to be thrown at runtime.

Note that the formatting for RealFloat types is currently a bit different from that of C printf(3), conforming instead to showEFloat, showFFloat and showGFloat (and their alternate versions showFFloatAlt and showGFloatAlt). This is hard to fix: the fixed versions would format in a backward-incompatible way. In any case the Haskell behavior is generally more sensible than the C behavior. A brief summary of some key differences:

  • Haskell printf never uses the default "6-digit" precision used by C printf.
  • Haskell printf treats the "precision" specifier as indicating the number of digits after the decimal point.
  • Haskell printf prints the exponent of e-format numbers without a gratuitous plus sign, and with the minimum possible number of digits.
  • Haskell printf will place a zero after a decimal point when possible.

hPrintf :: HPrintfType r => Handle -> String -> r #

Similar to printf, except that output is via the specified Handle. The return type is restricted to (IO a).