{-# OPTIONS_GHC -Wno-deprecations #-}
module Data.Barbie
  {-# DEPRECATED "Use Data.Functor.Barbie or Barbies instead" #-}
  (
    -- * Functor
    FunctorB(bmap)

    -- * Traversable
  , TraversableB(btraverse)
    -- ** Utility functions
  , btraverse_
  , bfoldMap
  , bsequence, bsequence'

    -- * Product
  , ProductB(buniq, bprod)
  , CanDeriveProductB

    -- ** Utility functions
  , App.bzip
  , App.bunzip
  , App.bzipWith
  , App.bzipWith3
  , App.bzipWith4

    -- * Constraints and instance dictionaries
  , ConstraintsB(AllB, baddDicts)
  , AllBF
    -- ** Utility functions
  , bmapC
  , btraverseC

    -- * Products and constaints
  , ProductBC(bdicts)
  , CanDeriveProductBC
    -- ** Utility functions
  , buniqC
  , bmempty

    -- * Wrapper
  , Barbie(..)

    -- * Trivial Barbies
  , Trivial.Void
  , Trivial.Unit (..)

    -- * Generic derivations
  , Rec(..)
  , GProductB(..)
  , GProductBC(..)

    -- * Deprecations
  , (/*/), (/*)
  )

where

import Barbies.Internal.ConstraintsB (AllBF, ConstraintsB (..), bmapC, btraverseC, bmempty)

import Barbies.Internal.FunctorB(FunctorB(..))
import Barbies.Internal.Wrappers(Barbie(..))
import qualified Barbies.Internal.ApplicativeB as App

import Data.Barbie.Internal.Product(ProductB(..), CanDeriveProductB, GProductB(..))
import Data.Barbie.Internal.ProductC(ProductBC(..), CanDeriveProductBC,  GProductBC(..), buniqC)

import Barbies.Internal.TraversableB
  ( TraversableB(..)
  , bsequence, bsequence'
  , bfoldMap, btraverse_
  )
import qualified Barbies.Internal.Trivial as Trivial

import Data.Functor.Product (Product(Pair))
import Data.Functor.Prod (Prod(..), oneTuple, prod)
import Data.Generics.GenericN (Rec(..))


{-# DEPRECATED (/*/), (/*) "Use bzipWith2, bzipWith3, etc" #-}

-- | Like 'bprod', but returns a binary 'Prod', instead of 'Product', which
--   composes better.
--
--   See '/*/' for usage.
(/*/)
  :: ProductB b => b f -> b g -> b (Prod '[f, g])
b f
l /*/ :: forall (b :: (* -> *) -> *) (f :: * -> *) (g :: * -> *).
ProductB b =>
b f -> b g -> b (Prod '[f, g])
/*/ b g
r
  = (forall a. Product f g a -> Prod '[f, g] a)
-> b (Product f g) -> b (Prod '[f, g])
forall k (b :: (k -> *) -> *) (f :: k -> *) (g :: k -> *).
FunctorB b =>
(forall (a :: k). f a -> g a) -> b f -> b g
forall (f :: * -> *) (g :: * -> *).
(forall a. f a -> g a) -> b f -> b g
bmap (\(Pair f a
f g a
g) -> f a -> Prod '[g] a -> Prod '[f, g] a
forall {k} (f :: k -> *) (b :: k) (fs :: [k -> *]).
f b -> Prod fs b -> Prod (f : fs) b
Cons f a
f (g a -> Prod '[] a -> Prod '[g] a
forall {k} (f :: k -> *) (b :: k) (fs :: [k -> *]).
f b -> Prod fs b -> Prod (f : fs) b
Cons g a
g Prod '[] a
forall {k} (b :: k). Prod '[] b
Unit)) (b f
l b f -> b g -> b (Product f g)
forall k (b :: (k -> *) -> *) (f :: k -> *) (g :: k -> *).
ProductB b =>
b f -> b g -> b (Product f g)
forall (f :: * -> *) (g :: * -> *). b f -> b g -> b (Product f g)
`bprod` b g
r)
infixr 4 /*/

-- | Similar to '/*/' but one of the sides is already a @'Prod' fs@.
--
--   Note that '/*', '/*/' and 'Data.Functor.Prod.uncurryn' are meant to be used together:
--   '/*' and '/*/' combine @b f1, b f2...b fn@ into a single product that
--   can then be consumed by using `Data.Functor.Prod.uncurryn` on an n-ary function. E.g.
--
-- @
-- f :: f a -> g a -> h a -> i a
--
-- 'bmap' ('Data.Functor.Prod.uncurryn' f) (bf '/*' bg '/*/' bh)
-- @
(/*) :: ProductB b => b f -> b (Prod fs) -> b (Prod (f ': fs))
b f
l /* :: forall (b :: (* -> *) -> *) (f :: * -> *) (fs :: [* -> *]).
ProductB b =>
b f -> b (Prod fs) -> b (Prod (f : fs))
/* b (Prod fs)
r =
  (forall a. Product f (Prod fs) a -> Prod (f : fs) a)
-> b (Product f (Prod fs)) -> b (Prod (f : fs))
forall k (b :: (k -> *) -> *) (f :: k -> *) (g :: k -> *).
FunctorB b =>
(forall (a :: k). f a -> g a) -> b f -> b g
forall (f :: * -> *) (g :: * -> *).
(forall a. f a -> g a) -> b f -> b g
bmap (\(Pair f a
f Prod fs a
fs) -> f a -> Prod '[f] a
forall {k} (f :: k -> *) (a :: k). f a -> Prod '[f] a
oneTuple f a
f Prod '[f] a -> Prod fs a -> Prod ('[f] ++ fs) a
forall {k} (ls :: [k -> *]) (a :: k) (rs :: [k -> *]).
Prod ls a -> Prod rs a -> Prod (ls ++ rs) a
`prod` Prod fs a
fs) (b f
l b f -> b (Prod fs) -> b (Product f (Prod fs))
forall k (b :: (k -> *) -> *) (f :: k -> *) (g :: k -> *).
ProductB b =>
b f -> b g -> b (Product f g)
forall (f :: * -> *) (g :: * -> *). b f -> b g -> b (Product f g)
`bprod` b (Prod fs)
r)
infixr 4 /*