-- |
-- Module      : Basement.Sized.Block
-- License     : BSD-style
-- Maintainer  : Haskell Foundation
--
-- A Nat-sized version of Block
{-# LANGUAGE AllowAmbiguousTypes        #-}
{-# LANGUAGE CPP                        #-}
{-# LANGUAGE ConstraintKinds            #-}
{-# LANGUAGE DataKinds                  #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE ScopedTypeVariables        #-}
{-# LANGUAGE TypeApplications           #-}
{-# LANGUAGE TypeOperators              #-}
#if __GLASGOW_HASKELL__ >= 806
{-# LANGUAGE NoStarIsType               #-}
#endif

module Basement.Sized.Block
    ( BlockN
    , MutableBlockN
    , length
    , lengthBytes
    , toBlockN
    , toBlock
    , new
    , newPinned
    , singleton
    , replicate
    , thaw
    , freeze
    , index
    , indexStatic
    , map
    , foldl'
    , foldr
    , cons
    , snoc
    , elem
    , sub
    , uncons
    , unsnoc
    , splitAt
    , all
    , any
    , find
    , reverse
    , sortBy
    , intersperse
    , withPtr
    , withMutablePtr
    , withMutablePtrHint
    , cast
    , mutableCast
    ) where

import           Data.Proxy (Proxy(..))
import           Basement.Compat.Base
import           Basement.Numerical.Additive (scale)
import           Basement.Block (Block, MutableBlock(..), unsafeIndex)
import qualified Basement.Block as B
import qualified Basement.Block.Base as B
import           Basement.Monad (PrimMonad, PrimState)
import           Basement.Nat
import           Basement.Types.OffsetSize
import           Basement.NormalForm
import           Basement.PrimType (PrimType, PrimSize, primSizeInBytes)

-- | Sized version of 'Block'
--
newtype BlockN (n :: Nat) a = BlockN { forall (n :: Nat) a. BlockN n a -> Block a
unBlock :: Block a }
  deriving (BlockN n a -> ()
(BlockN n a -> ()) -> NormalForm (BlockN n a)
forall (n :: Nat) a. BlockN n a -> ()
forall a. (a -> ()) -> NormalForm a
$ctoNormalForm :: forall (n :: Nat) a. BlockN n a -> ()
toNormalForm :: BlockN n a -> ()
NormalForm, BlockN n a -> BlockN n a -> Bool
(BlockN n a -> BlockN n a -> Bool)
-> (BlockN n a -> BlockN n a -> Bool) -> Eq (BlockN n a)
forall (n :: Nat) a. PrimType a => BlockN n a -> BlockN n a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: forall (n :: Nat) a. PrimType a => BlockN n a -> BlockN n a -> Bool
== :: BlockN n a -> BlockN n a -> Bool
$c/= :: forall (n :: Nat) a. PrimType a => BlockN n a -> BlockN n a -> Bool
/= :: BlockN n a -> BlockN n a -> Bool
Eq, Int -> BlockN n a -> ShowS
[BlockN n a] -> ShowS
BlockN n a -> String
(Int -> BlockN n a -> ShowS)
-> (BlockN n a -> String)
-> ([BlockN n a] -> ShowS)
-> Show (BlockN n a)
forall (n :: Nat) a.
(PrimType a, Show a) =>
Int -> BlockN n a -> ShowS
forall (n :: Nat) a. (PrimType a, Show a) => [BlockN n a] -> ShowS
forall (n :: Nat) a. (PrimType a, Show a) => BlockN n a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: forall (n :: Nat) a.
(PrimType a, Show a) =>
Int -> BlockN n a -> ShowS
showsPrec :: Int -> BlockN n a -> ShowS
$cshow :: forall (n :: Nat) a. (PrimType a, Show a) => BlockN n a -> String
show :: BlockN n a -> String
$cshowList :: forall (n :: Nat) a. (PrimType a, Show a) => [BlockN n a] -> ShowS
showList :: [BlockN n a] -> ShowS
Show, Typeable (BlockN n a)
Typeable (BlockN n a) =>
(forall (c :: Type -> Type).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> BlockN n a -> c (BlockN n a))
-> (forall (c :: Type -> Type).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c (BlockN n a))
-> (BlockN n a -> Constr)
-> (BlockN n a -> DataType)
-> (forall (t :: Type -> Type) (c :: Type -> Type).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c (BlockN n a)))
-> (forall (t :: Type -> Type -> Type) (c :: Type -> Type).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c (BlockN n a)))
-> ((forall b. Data b => b -> b) -> BlockN n a -> BlockN n a)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> BlockN n a -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> BlockN n a -> r)
-> (forall u. (forall d. Data d => d -> u) -> BlockN n a -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> BlockN n a -> u)
-> (forall (m :: Type -> Type).
    Monad m =>
    (forall d. Data d => d -> m d) -> BlockN n a -> m (BlockN n a))
-> (forall (m :: Type -> Type).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> BlockN n a -> m (BlockN n a))
-> (forall (m :: Type -> Type).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> BlockN n a -> m (BlockN n a))
-> Data (BlockN n a)
BlockN n a -> Constr
BlockN n a -> DataType
(forall b. Data b => b -> b) -> BlockN n a -> BlockN n a
forall (n :: Nat) a. (KnownNat n, Data a) => Typeable (BlockN n a)
forall (n :: Nat) a. (KnownNat n, Data a) => BlockN n a -> Constr
forall (n :: Nat) a. (KnownNat n, Data a) => BlockN n a -> DataType
forall (n :: Nat) a.
(KnownNat n, Data a) =>
(forall b. Data b => b -> b) -> BlockN n a -> BlockN n a
forall (n :: Nat) a u.
(KnownNat n, Data a) =>
Int -> (forall d. Data d => d -> u) -> BlockN n a -> u
forall (n :: Nat) a u.
(KnownNat n, Data a) =>
(forall d. Data d => d -> u) -> BlockN n a -> [u]
forall (n :: Nat) a r r'.
(KnownNat n, Data a) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> BlockN n a -> r
forall (n :: Nat) a r r'.
(KnownNat n, Data a) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> BlockN n a -> r
forall (n :: Nat) a (m :: Type -> Type).
(KnownNat n, Data a, Monad m) =>
(forall d. Data d => d -> m d) -> BlockN n a -> m (BlockN n a)
forall (n :: Nat) a (m :: Type -> Type).
(KnownNat n, Data a, MonadPlus m) =>
(forall d. Data d => d -> m d) -> BlockN n a -> m (BlockN n a)
forall (n :: Nat) a (c :: Type -> Type).
(KnownNat n, Data a) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (BlockN n a)
forall (n :: Nat) a (c :: Type -> Type).
(KnownNat n, Data a) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> BlockN n a -> c (BlockN n a)
forall (n :: Nat) a (t :: Type -> Type) (c :: Type -> Type).
(KnownNat n, Data a, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (BlockN n a))
forall (n :: Nat) a (t :: Type -> Type -> Type)
       (c :: Type -> Type).
(KnownNat n, Data a, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (BlockN n a))
forall a.
Typeable a =>
(forall (c :: Type -> Type).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: Type -> Type).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: Type -> Type) (c :: Type -> Type).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: Type -> Type -> Type) (c :: Type -> Type).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: Type -> Type).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: Type -> Type).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: Type -> Type).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> BlockN n a -> u
forall u. (forall d. Data d => d -> u) -> BlockN n a -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> BlockN n a -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> BlockN n a -> r
forall (m :: Type -> Type).
Monad m =>
(forall d. Data d => d -> m d) -> BlockN n a -> m (BlockN n a)
forall (m :: Type -> Type).
MonadPlus m =>
(forall d. Data d => d -> m d) -> BlockN n a -> m (BlockN n a)
forall (c :: Type -> Type).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (BlockN n a)
forall (c :: Type -> Type).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> BlockN n a -> c (BlockN n a)
forall (t :: Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (BlockN n a))
forall (t :: Type -> Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (BlockN n a))
$cgfoldl :: forall (n :: Nat) a (c :: Type -> Type).
(KnownNat n, Data a) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> BlockN n a -> c (BlockN n a)
gfoldl :: forall (c :: Type -> Type).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> BlockN n a -> c (BlockN n a)
$cgunfold :: forall (n :: Nat) a (c :: Type -> Type).
(KnownNat n, Data a) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (BlockN n a)
gunfold :: forall (c :: Type -> Type).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (BlockN n a)
$ctoConstr :: forall (n :: Nat) a. (KnownNat n, Data a) => BlockN n a -> Constr
toConstr :: BlockN n a -> Constr
$cdataTypeOf :: forall (n :: Nat) a. (KnownNat n, Data a) => BlockN n a -> DataType
dataTypeOf :: BlockN n a -> DataType
$cdataCast1 :: forall (n :: Nat) a (t :: Type -> Type) (c :: Type -> Type).
(KnownNat n, Data a, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (BlockN n a))
dataCast1 :: forall (t :: Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (BlockN n a))
$cdataCast2 :: forall (n :: Nat) a (t :: Type -> Type -> Type)
       (c :: Type -> Type).
(KnownNat n, Data a, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (BlockN n a))
dataCast2 :: forall (t :: Type -> Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (BlockN n a))
$cgmapT :: forall (n :: Nat) a.
(KnownNat n, Data a) =>
(forall b. Data b => b -> b) -> BlockN n a -> BlockN n a
gmapT :: (forall b. Data b => b -> b) -> BlockN n a -> BlockN n a
$cgmapQl :: forall (n :: Nat) a r r'.
(KnownNat n, Data a) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> BlockN n a -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> BlockN n a -> r
$cgmapQr :: forall (n :: Nat) a r r'.
(KnownNat n, Data a) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> BlockN n a -> r
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> BlockN n a -> r
$cgmapQ :: forall (n :: Nat) a u.
(KnownNat n, Data a) =>
(forall d. Data d => d -> u) -> BlockN n a -> [u]
gmapQ :: forall u. (forall d. Data d => d -> u) -> BlockN n a -> [u]
$cgmapQi :: forall (n :: Nat) a u.
(KnownNat n, Data a) =>
Int -> (forall d. Data d => d -> u) -> BlockN n a -> u
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> BlockN n a -> u
$cgmapM :: forall (n :: Nat) a (m :: Type -> Type).
(KnownNat n, Data a, Monad m) =>
(forall d. Data d => d -> m d) -> BlockN n a -> m (BlockN n a)
gmapM :: forall (m :: Type -> Type).
Monad m =>
(forall d. Data d => d -> m d) -> BlockN n a -> m (BlockN n a)
$cgmapMp :: forall (n :: Nat) a (m :: Type -> Type).
(KnownNat n, Data a, MonadPlus m) =>
(forall d. Data d => d -> m d) -> BlockN n a -> m (BlockN n a)
gmapMp :: forall (m :: Type -> Type).
MonadPlus m =>
(forall d. Data d => d -> m d) -> BlockN n a -> m (BlockN n a)
$cgmapMo :: forall (n :: Nat) a (m :: Type -> Type).
(KnownNat n, Data a, MonadPlus m) =>
(forall d. Data d => d -> m d) -> BlockN n a -> m (BlockN n a)
gmapMo :: forall (m :: Type -> Type).
MonadPlus m =>
(forall d. Data d => d -> m d) -> BlockN n a -> m (BlockN n a)
Data, Eq (BlockN n a)
Eq (BlockN n a) =>
(BlockN n a -> BlockN n a -> Ordering)
-> (BlockN n a -> BlockN n a -> Bool)
-> (BlockN n a -> BlockN n a -> Bool)
-> (BlockN n a -> BlockN n a -> Bool)
-> (BlockN n a -> BlockN n a -> Bool)
-> (BlockN n a -> BlockN n a -> BlockN n a)
-> (BlockN n a -> BlockN n a -> BlockN n a)
-> Ord (BlockN n a)
BlockN n a -> BlockN n a -> Bool
BlockN n a -> BlockN n a -> Ordering
BlockN n a -> BlockN n a -> BlockN n a
forall (n :: Nat) a. (PrimType a, Ord a) => Eq (BlockN n a)
forall (n :: Nat) a.
(PrimType a, Ord a) =>
BlockN n a -> BlockN n a -> Bool
forall (n :: Nat) a.
(PrimType a, Ord a) =>
BlockN n a -> BlockN n a -> Ordering
forall (n :: Nat) a.
(PrimType a, Ord a) =>
BlockN n a -> BlockN n a -> BlockN n a
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
$ccompare :: forall (n :: Nat) a.
(PrimType a, Ord a) =>
BlockN n a -> BlockN n a -> Ordering
compare :: BlockN n a -> BlockN n a -> Ordering
$c< :: forall (n :: Nat) a.
(PrimType a, Ord a) =>
BlockN n a -> BlockN n a -> Bool
< :: BlockN n a -> BlockN n a -> Bool
$c<= :: forall (n :: Nat) a.
(PrimType a, Ord a) =>
BlockN n a -> BlockN n a -> Bool
<= :: BlockN n a -> BlockN n a -> Bool
$c> :: forall (n :: Nat) a.
(PrimType a, Ord a) =>
BlockN n a -> BlockN n a -> Bool
> :: BlockN n a -> BlockN n a -> Bool
$c>= :: forall (n :: Nat) a.
(PrimType a, Ord a) =>
BlockN n a -> BlockN n a -> Bool
>= :: BlockN n a -> BlockN n a -> Bool
$cmax :: forall (n :: Nat) a.
(PrimType a, Ord a) =>
BlockN n a -> BlockN n a -> BlockN n a
max :: BlockN n a -> BlockN n a -> BlockN n a
$cmin :: forall (n :: Nat) a.
(PrimType a, Ord a) =>
BlockN n a -> BlockN n a -> BlockN n a
min :: BlockN n a -> BlockN n a -> BlockN n a
Ord)

newtype MutableBlockN (n :: Nat) ty st = MutableBlockN { forall (n :: Nat) ty st.
MutableBlockN n ty st -> MutableBlock ty st
unMBlock :: MutableBlock ty st }

toBlockN :: forall n ty . (PrimType ty, KnownNat n, Countable ty n) => Block ty -> Maybe (BlockN n ty)
toBlockN :: forall (n :: Nat) ty.
(PrimType ty, KnownNat n, Countable ty n) =>
Block ty -> Maybe (BlockN n ty)
toBlockN Block ty
b
    | CountOf ty
expected CountOf ty -> CountOf ty -> Bool
forall a. Eq a => a -> a -> Bool
== Block ty -> CountOf ty
forall ty. PrimType ty => Block ty -> CountOf ty
B.length Block ty
b = BlockN n ty -> Maybe (BlockN n ty)
forall a. a -> Maybe a
Just (Block ty -> BlockN n ty
forall (n :: Nat) a. Block a -> BlockN n a
BlockN Block ty
b)
    | Bool
otherwise = Maybe (BlockN n ty)
forall a. Maybe a
Nothing
  where
    expected :: CountOf ty
expected = forall (n :: Nat) ty. (KnownNat n, Countable ty n) => CountOf ty
toCount @n

length :: forall n ty
        . (KnownNat n, Countable ty n)
       => BlockN n ty
       -> CountOf ty
length :: forall (n :: Nat) ty.
(KnownNat n, Countable ty n) =>
BlockN n ty -> CountOf ty
length BlockN n ty
_ = forall (n :: Nat) ty. (KnownNat n, Countable ty n) => CountOf ty
toCount @n

lengthBytes :: forall n ty
             . PrimType ty
            => BlockN n ty
            -> CountOf Word8
lengthBytes :: forall (n :: Nat) ty. PrimType ty => BlockN n ty -> CountOf Word8
lengthBytes = Block ty -> CountOf Word8
forall ty. Block ty -> CountOf Word8
B.lengthBytes (Block ty -> CountOf Word8)
-> (BlockN n ty -> Block ty) -> BlockN n ty -> CountOf Word8
forall b c a. (b -> c) -> (a -> b) -> a -> c
forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock

toBlock :: BlockN n ty -> Block ty
toBlock :: forall (n :: Nat) a. BlockN n a -> Block a
toBlock = BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock

cast :: forall n m a b
      . ( PrimType a, PrimType b
        , KnownNat n, KnownNat m
        , ((PrimSize b) * m) ~ ((PrimSize a) * n)
        )
      => BlockN n a
      -> BlockN m b
cast :: forall (n :: Nat) (m :: Nat) a b.
(PrimType a, PrimType b, KnownNat n, KnownNat m,
 (PrimSize b * m) ~ (PrimSize a * n)) =>
BlockN n a -> BlockN m b
cast (BlockN Block a
b) = Block b -> BlockN m b
forall (n :: Nat) a. Block a -> BlockN n a
BlockN (Block a -> Block b
forall b a. PrimType b => Block a -> Block b
B.unsafeCast Block a
b)

mutableCast :: forall n m a b st
             . ( PrimType a, PrimType b
             , KnownNat n, KnownNat m
             , ((PrimSize b) * m) ~ ((PrimSize a) * n)
             )
            => MutableBlockN n a st
            -> MutableBlockN m b st
mutableCast :: forall (n :: Nat) (m :: Nat) a b st.
(PrimType a, PrimType b, KnownNat n, KnownNat m,
 (PrimSize b * m) ~ (PrimSize a * n)) =>
MutableBlockN n a st -> MutableBlockN m b st
mutableCast (MutableBlockN MutableBlock a st
b) = MutableBlock b st -> MutableBlockN m b st
forall (n :: Nat) ty st.
MutableBlock ty st -> MutableBlockN n ty st
MutableBlockN (MutableBlock a st -> MutableBlock b st
forall t1 t2 st.
(PrimType t1, PrimType t2) =>
MutableBlock t1 st -> MutableBlock t2 st
B.unsafeRecast MutableBlock a st
b)

-- | Create a new unpinned mutable block of a specific N size of 'ty' elements
--
-- If the size exceeds a GHC-defined threshold, then the memory will be
-- pinned. To be certain about pinning status with small size, use 'newPinned'
new :: forall n ty prim
     . (PrimType ty, KnownNat n, Countable ty n, PrimMonad prim)
    => prim (MutableBlockN n ty (PrimState prim))
new :: forall (n :: Nat) ty (prim :: Type -> Type).
(PrimType ty, KnownNat n, Countable ty n, PrimMonad prim) =>
prim (MutableBlockN n ty (PrimState prim))
new = MutableBlock ty (PrimState prim)
-> MutableBlockN n ty (PrimState prim)
forall (n :: Nat) ty st.
MutableBlock ty st -> MutableBlockN n ty st
MutableBlockN (MutableBlock ty (PrimState prim)
 -> MutableBlockN n ty (PrimState prim))
-> prim (MutableBlock ty (PrimState prim))
-> prim (MutableBlockN n ty (PrimState prim))
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> CountOf ty -> prim (MutableBlock ty (PrimState prim))
forall (prim :: Type -> Type) ty.
(PrimMonad prim, PrimType ty) =>
CountOf ty -> prim (MutableBlock ty (PrimState prim))
B.new (forall (n :: Nat) ty. (KnownNat n, Countable ty n) => CountOf ty
toCount @n)

-- | Create a new pinned mutable block of a specific N size of 'ty' elements
newPinned :: forall n ty prim
           . (PrimType ty, KnownNat n, Countable ty n, PrimMonad prim)
          => prim (MutableBlockN n ty (PrimState prim))
newPinned :: forall (n :: Nat) ty (prim :: Type -> Type).
(PrimType ty, KnownNat n, Countable ty n, PrimMonad prim) =>
prim (MutableBlockN n ty (PrimState prim))
newPinned = MutableBlock ty (PrimState prim)
-> MutableBlockN n ty (PrimState prim)
forall (n :: Nat) ty st.
MutableBlock ty st -> MutableBlockN n ty st
MutableBlockN (MutableBlock ty (PrimState prim)
 -> MutableBlockN n ty (PrimState prim))
-> prim (MutableBlock ty (PrimState prim))
-> prim (MutableBlockN n ty (PrimState prim))
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> CountOf ty -> prim (MutableBlock ty (PrimState prim))
forall (prim :: Type -> Type) ty.
(PrimMonad prim, PrimType ty) =>
CountOf ty -> prim (MutableBlock ty (PrimState prim))
B.newPinned (forall (n :: Nat) ty. (KnownNat n, Countable ty n) => CountOf ty
toCount @n)

singleton :: PrimType ty => ty -> BlockN 1 ty
singleton :: forall ty. PrimType ty => ty -> BlockN 1 ty
singleton ty
a = Block ty -> BlockN 1 ty
forall (n :: Nat) a. Block a -> BlockN n a
BlockN (ty -> Block ty
forall ty. PrimType ty => ty -> Block ty
B.singleton ty
a)

replicate :: forall n ty . (KnownNat n, Countable ty n, PrimType ty) => ty -> BlockN n ty
replicate :: forall (n :: Nat) ty.
(KnownNat n, Countable ty n, PrimType ty) =>
ty -> BlockN n ty
replicate ty
a = Block ty -> BlockN n ty
forall (n :: Nat) a. Block a -> BlockN n a
BlockN (CountOf ty -> ty -> Block ty
forall ty. PrimType ty => CountOf ty -> ty -> Block ty
B.replicate (forall (n :: Nat) ty. (KnownNat n, Countable ty n) => CountOf ty
toCount @n) ty
a)

thaw :: (KnownNat n, PrimMonad prim, PrimType ty) => BlockN n ty -> prim (MutableBlockN n ty (PrimState prim))
thaw :: forall (n :: Nat) (prim :: Type -> Type) ty.
(KnownNat n, PrimMonad prim, PrimType ty) =>
BlockN n ty -> prim (MutableBlockN n ty (PrimState prim))
thaw BlockN n ty
b = MutableBlock ty (PrimState prim)
-> MutableBlockN n ty (PrimState prim)
forall (n :: Nat) ty st.
MutableBlock ty st -> MutableBlockN n ty st
MutableBlockN (MutableBlock ty (PrimState prim)
 -> MutableBlockN n ty (PrimState prim))
-> prim (MutableBlock ty (PrimState prim))
-> prim (MutableBlockN n ty (PrimState prim))
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Block ty -> prim (MutableBlock ty (PrimState prim))
forall (prim :: Type -> Type) ty.
(PrimMonad prim, PrimType ty) =>
Block ty -> prim (MutableBlock ty (PrimState prim))
B.thaw (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b)

freeze ::  (PrimMonad prim, PrimType ty, Countable ty n) => MutableBlockN n ty (PrimState prim) -> prim (BlockN n ty)
freeze :: forall (prim :: Type -> Type) ty (n :: Nat).
(PrimMonad prim, PrimType ty, Countable ty n) =>
MutableBlockN n ty (PrimState prim) -> prim (BlockN n ty)
freeze MutableBlockN n ty (PrimState prim)
b = Block ty -> BlockN n ty
forall (n :: Nat) a. Block a -> BlockN n a
BlockN (Block ty -> BlockN n ty) -> prim (Block ty) -> prim (BlockN n ty)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> MutableBlock ty (PrimState prim) -> prim (Block ty)
forall ty (prim :: Type -> Type).
(PrimType ty, PrimMonad prim) =>
MutableBlock ty (PrimState prim) -> prim (Block ty)
B.freeze (MutableBlockN n ty (PrimState prim)
-> MutableBlock ty (PrimState prim)
forall (n :: Nat) ty st.
MutableBlockN n ty st -> MutableBlock ty st
unMBlock MutableBlockN n ty (PrimState prim)
b)

indexStatic :: forall i n ty . (KnownNat i, CmpNat i n ~ 'LT, PrimType ty, Offsetable ty i) => BlockN n ty -> ty
indexStatic :: forall (i :: Nat) (n :: Nat) ty.
(KnownNat i, CmpNat i n ~ 'LT, PrimType ty, Offsetable ty i) =>
BlockN n ty -> ty
indexStatic BlockN n ty
b = Block ty -> Offset ty -> ty
forall ty. PrimType ty => Block ty -> Offset ty -> ty
unsafeIndex (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b) (forall (n :: Nat) ty. (KnownNat n, Offsetable ty n) => Offset ty
toOffset @i)

index :: forall i n ty . PrimType ty => BlockN n ty -> Offset ty -> ty
index :: forall i (n :: Nat) ty.
PrimType ty =>
BlockN n ty -> Offset ty -> ty
index BlockN n ty
b Offset ty
ofs = Block ty -> Offset ty -> ty
forall ty. PrimType ty => Block ty -> Offset ty -> ty
B.index (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b) Offset ty
ofs

map :: (PrimType a, PrimType b) => (a -> b) -> BlockN n a -> BlockN n b
map :: forall a b (n :: Nat).
(PrimType a, PrimType b) =>
(a -> b) -> BlockN n a -> BlockN n b
map a -> b
f BlockN n a
b = Block b -> BlockN n b
forall (n :: Nat) a. Block a -> BlockN n a
BlockN ((a -> b) -> Block a -> Block b
forall a b.
(PrimType a, PrimType b) =>
(a -> b) -> Block a -> Block b
B.map a -> b
f (BlockN n a -> Block a
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n a
b))

foldl' :: PrimType ty => (a -> ty -> a) -> a -> BlockN n ty -> a
foldl' :: forall ty a (n :: Nat).
PrimType ty =>
(a -> ty -> a) -> a -> BlockN n ty -> a
foldl' a -> ty -> a
f a
acc BlockN n ty
b = (a -> ty -> a) -> a -> Block ty -> a
forall ty a. PrimType ty => (a -> ty -> a) -> a -> Block ty -> a
B.foldl' a -> ty -> a
f a
acc (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b)

foldr :: PrimType ty => (ty -> a -> a) -> a -> BlockN n ty -> a
foldr :: forall ty a (n :: Nat).
PrimType ty =>
(ty -> a -> a) -> a -> BlockN n ty -> a
foldr ty -> a -> a
f a
acc BlockN n ty
b = (ty -> a -> a) -> a -> Block ty -> a
forall ty a. PrimType ty => (ty -> a -> a) -> a -> Block ty -> a
B.foldr ty -> a -> a
f a
acc (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b)

cons :: PrimType ty => ty -> BlockN n ty -> BlockN (n+1) ty
cons :: forall ty (n :: Nat).
PrimType ty =>
ty -> BlockN n ty -> BlockN (n + 1) ty
cons ty
e = Block ty -> BlockN (n + 1) ty
forall (n :: Nat) a. Block a -> BlockN n a
BlockN (Block ty -> BlockN (n + 1) ty)
-> (BlockN n ty -> Block ty) -> BlockN n ty -> BlockN (n + 1) ty
forall b c a. (b -> c) -> (a -> b) -> a -> c
forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. ty -> Block ty -> Block ty
forall ty. PrimType ty => ty -> Block ty -> Block ty
B.cons ty
e (Block ty -> Block ty)
-> (BlockN n ty -> Block ty) -> BlockN n ty -> Block ty
forall b c a. (b -> c) -> (a -> b) -> a -> c
forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock

snoc :: PrimType ty => BlockN n ty -> ty -> BlockN (n+1) ty
snoc :: forall ty (n :: Nat).
PrimType ty =>
BlockN n ty -> ty -> BlockN (n + 1) ty
snoc BlockN n ty
b = Block ty -> BlockN (n + 1) ty
forall (n :: Nat) a. Block a -> BlockN n a
BlockN (Block ty -> BlockN (n + 1) ty)
-> (ty -> Block ty) -> ty -> BlockN (n + 1) ty
forall b c a. (b -> c) -> (a -> b) -> a -> c
forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Block ty -> ty -> Block ty
forall ty. PrimType ty => Block ty -> ty -> Block ty
B.snoc (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b)

sub :: forall i j n ty
     . ( (i <=? n) ~ 'True
       , (j <=? n) ~ 'True
       , (i <=? j) ~ 'True
       , PrimType ty
       , KnownNat i
       , KnownNat j
       , Offsetable ty i
       , Offsetable ty j )
    => BlockN n ty
    -> BlockN (j-i) ty
sub :: forall (i :: Nat) (j :: Nat) (n :: Nat) ty.
((i <=? n) ~ 'True, (j <=? n) ~ 'True, (i <=? j) ~ 'True,
 PrimType ty, KnownNat i, KnownNat j, Offsetable ty i,
 Offsetable ty j) =>
BlockN n ty -> BlockN (j - i) ty
sub BlockN n ty
block = Block ty -> BlockN (j - i) ty
forall (n :: Nat) a. Block a -> BlockN n a
BlockN (Block ty -> Offset ty -> Offset ty -> Block ty
forall ty.
PrimType ty =>
Block ty -> Offset ty -> Offset ty -> Block ty
B.sub (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
block) (forall (n :: Nat) ty. (KnownNat n, Offsetable ty n) => Offset ty
toOffset @i) (forall (n :: Nat) ty. (KnownNat n, Offsetable ty n) => Offset ty
toOffset @j))

uncons :: forall n ty . (CmpNat 0 n ~ 'LT, PrimType ty, KnownNat n, Offsetable ty n)
       => BlockN n ty
       -> (ty, BlockN (n-1) ty)
uncons :: forall (n :: Nat) ty.
(CmpNat 0 n ~ 'LT, PrimType ty, KnownNat n, Offsetable ty n) =>
BlockN n ty -> (ty, BlockN (n - 1) ty)
uncons BlockN n ty
b = (forall (i :: Nat) (n :: Nat) ty.
(KnownNat i, CmpNat i n ~ 'LT, PrimType ty, Offsetable ty i) =>
BlockN n ty -> ty
indexStatic @0 BlockN n ty
b, Block ty -> BlockN (n - 1) ty
forall (n :: Nat) a. Block a -> BlockN n a
BlockN (Block ty -> Offset ty -> Offset ty -> Block ty
forall ty.
PrimType ty =>
Block ty -> Offset ty -> Offset ty -> Block ty
B.sub (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b) Offset ty
1 (forall (n :: Nat) ty. (KnownNat n, Offsetable ty n) => Offset ty
toOffset @n)))

unsnoc :: forall n ty . (CmpNat 0 n ~ 'LT, KnownNat n, PrimType ty, Offsetable ty n)
       => BlockN n ty
       -> (BlockN (n-1) ty, ty)
unsnoc :: forall (n :: Nat) ty.
(CmpNat 0 n ~ 'LT, KnownNat n, PrimType ty, Offsetable ty n) =>
BlockN n ty -> (BlockN (n - 1) ty, ty)
unsnoc BlockN n ty
b =
    ( Block ty -> BlockN (n - 1) ty
forall (n :: Nat) a. Block a -> BlockN n a
BlockN (Block ty -> Offset ty -> Offset ty -> Block ty
forall ty.
PrimType ty =>
Block ty -> Offset ty -> Offset ty -> Block ty
B.sub (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b) Offset ty
0 (forall (n :: Nat) ty. (KnownNat n, Offsetable ty n) => Offset ty
toOffset @n Offset ty -> Offset ty -> Offset ty
forall a. Offset a -> Offset a -> Offset a
`offsetSub` Offset ty
1))
    , Block ty -> Offset ty -> ty
forall ty. PrimType ty => Block ty -> Offset ty -> ty
unsafeIndex (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b) (forall (n :: Nat) ty. (KnownNat n, Offsetable ty n) => Offset ty
toOffset @n Offset ty -> Offset ty -> Offset ty
forall a. Offset a -> Offset a -> Offset a
`offsetSub` Offset ty
1))

splitAt :: forall i n ty . (CmpNat i n ~ 'LT, PrimType ty, KnownNat i, Countable ty i) => BlockN n ty -> (BlockN i ty, BlockN (n-i) ty)
splitAt :: forall (i :: Nat) (n :: Nat) ty.
(CmpNat i n ~ 'LT, PrimType ty, KnownNat i, Countable ty i) =>
BlockN n ty -> (BlockN i ty, BlockN (n - i) ty)
splitAt BlockN n ty
b =
    let (Block ty
left, Block ty
right) = CountOf ty -> Block ty -> (Block ty, Block ty)
forall ty.
PrimType ty =>
CountOf ty -> Block ty -> (Block ty, Block ty)
B.splitAt (forall (n :: Nat) ty. (KnownNat n, Countable ty n) => CountOf ty
toCount @i) (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b)
     in (Block ty -> BlockN i ty
forall (n :: Nat) a. Block a -> BlockN n a
BlockN Block ty
left, Block ty -> BlockN (n - i) ty
forall (n :: Nat) a. Block a -> BlockN n a
BlockN Block ty
right)

elem :: PrimType ty => ty -> BlockN n ty -> Bool
elem :: forall ty (n :: Nat). PrimType ty => ty -> BlockN n ty -> Bool
elem ty
e BlockN n ty
b = ty -> Block ty -> Bool
forall ty. PrimType ty => ty -> Block ty -> Bool
B.elem ty
e (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b)

all :: PrimType ty => (ty -> Bool) -> BlockN n ty -> Bool
all :: forall ty (n :: Nat).
PrimType ty =>
(ty -> Bool) -> BlockN n ty -> Bool
all ty -> Bool
p BlockN n ty
b = (ty -> Bool) -> Block ty -> Bool
forall ty. PrimType ty => (ty -> Bool) -> Block ty -> Bool
B.all ty -> Bool
p (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b)

any :: PrimType ty => (ty -> Bool) -> BlockN n ty -> Bool
any :: forall ty (n :: Nat).
PrimType ty =>
(ty -> Bool) -> BlockN n ty -> Bool
any ty -> Bool
p BlockN n ty
b = (ty -> Bool) -> Block ty -> Bool
forall ty. PrimType ty => (ty -> Bool) -> Block ty -> Bool
B.any ty -> Bool
p (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b)

find :: PrimType ty => (ty -> Bool) -> BlockN n ty -> Maybe ty
find :: forall ty (n :: Nat).
PrimType ty =>
(ty -> Bool) -> BlockN n ty -> Maybe ty
find ty -> Bool
p BlockN n ty
b = (ty -> Bool) -> Block ty -> Maybe ty
forall ty. PrimType ty => (ty -> Bool) -> Block ty -> Maybe ty
B.find ty -> Bool
p (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b)

reverse :: PrimType ty => BlockN n ty -> BlockN n ty
reverse :: forall ty (n :: Nat). PrimType ty => BlockN n ty -> BlockN n ty
reverse = Block ty -> BlockN n ty
forall (n :: Nat) a. Block a -> BlockN n a
BlockN (Block ty -> BlockN n ty)
-> (BlockN n ty -> Block ty) -> BlockN n ty -> BlockN n ty
forall b c a. (b -> c) -> (a -> b) -> a -> c
forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Block ty -> Block ty
forall ty. PrimType ty => Block ty -> Block ty
B.reverse (Block ty -> Block ty)
-> (BlockN n ty -> Block ty) -> BlockN n ty -> Block ty
forall b c a. (b -> c) -> (a -> b) -> a -> c
forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock

sortBy :: PrimType ty => (ty -> ty -> Ordering) -> BlockN n ty -> BlockN n ty
sortBy :: forall ty (n :: Nat).
PrimType ty =>
(ty -> ty -> Ordering) -> BlockN n ty -> BlockN n ty
sortBy ty -> ty -> Ordering
f BlockN n ty
b = Block ty -> BlockN n ty
forall (n :: Nat) a. Block a -> BlockN n a
BlockN ((ty -> ty -> Ordering) -> Block ty -> Block ty
forall ty.
PrimType ty =>
(ty -> ty -> Ordering) -> Block ty -> Block ty
B.sortBy ty -> ty -> Ordering
f (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b))

intersperse :: (CmpNat n 1 ~ 'GT, PrimType ty) => ty -> BlockN n ty -> BlockN (n+n-1) ty
intersperse :: forall (n :: Nat) ty.
(CmpNat n 1 ~ 'GT, PrimType ty) =>
ty -> BlockN n ty -> BlockN ((n + n) - 1) ty
intersperse ty
sep BlockN n ty
b = Block ty -> BlockN ((n + n) - 1) ty
forall (n :: Nat) a. Block a -> BlockN n a
BlockN (ty -> Block ty -> Block ty
forall ty. PrimType ty => ty -> Block ty -> Block ty
B.intersperse ty
sep (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b))

toCount :: forall n ty . (KnownNat n, Countable ty n) => CountOf ty
toCount :: forall (n :: Nat) ty. (KnownNat n, Countable ty n) => CountOf ty
toCount = Proxy n -> CountOf ty
forall (n :: Nat) ty (proxy :: Nat -> Type).
(KnownNat n, NatWithinBound (CountOf ty) n) =>
proxy n -> CountOf ty
natValCountOf (forall (t :: Nat). Proxy t
forall {k} (t :: k). Proxy t
Proxy @n)

toOffset :: forall n ty . (KnownNat n, Offsetable ty n) => Offset ty
toOffset :: forall (n :: Nat) ty. (KnownNat n, Offsetable ty n) => Offset ty
toOffset = Proxy n -> Offset ty
forall (n :: Nat) ty (proxy :: Nat -> Type).
(KnownNat n, NatWithinBound (Offset ty) n) =>
proxy n -> Offset ty
natValOffset (forall (t :: Nat). Proxy t
forall {k} (t :: k). Proxy t
Proxy @n)

-- | Get a Ptr pointing to the data in the Block.
--
-- Since a Block is immutable, this Ptr shouldn't be
-- to use to modify the contents
--
-- If the Block is pinned, then its address is returned as is,
-- however if it's unpinned, a pinned copy of the Block is made
-- before getting the address.
withPtr :: (PrimMonad prim, KnownNat n)
        => BlockN n ty
        -> (Ptr ty -> prim a)
        -> prim a
withPtr :: forall (prim :: Type -> Type) (n :: Nat) ty a.
(PrimMonad prim, KnownNat n) =>
BlockN n ty -> (Ptr ty -> prim a) -> prim a
withPtr BlockN n ty
b = Block ty -> (Ptr ty -> prim a) -> prim a
forall (prim :: Type -> Type) ty a.
PrimMonad prim =>
Block ty -> (Ptr ty -> prim a) -> prim a
B.withPtr (BlockN n ty -> Block ty
forall (n :: Nat) a. BlockN n a -> Block a
unBlock BlockN n ty
b)

-- | Create a pointer on the beginning of the MutableBlock
-- and call a function 'f'.
--
-- The mutable block can be mutated by the 'f' function
-- and the change will be reflected in the mutable block
--
-- If the mutable block is unpinned, a trampoline buffer
-- is created and the data is only copied when 'f' return.
--
-- it is all-in-all highly inefficient as this cause 2 copies
withMutablePtr :: (PrimMonad prim, KnownNat n)
               => MutableBlockN n ty (PrimState prim)
               -> (Ptr ty -> prim a)
               -> prim a
withMutablePtr :: forall (prim :: Type -> Type) (n :: Nat) ty a.
(PrimMonad prim, KnownNat n) =>
MutableBlockN n ty (PrimState prim) -> (Ptr ty -> prim a) -> prim a
withMutablePtr MutableBlockN n ty (PrimState prim)
mb = MutableBlock ty (PrimState prim) -> (Ptr ty -> prim a) -> prim a
forall (prim :: Type -> Type) ty a.
PrimMonad prim =>
MutableBlock ty (PrimState prim) -> (Ptr ty -> prim a) -> prim a
B.withMutablePtr (MutableBlockN n ty (PrimState prim)
-> MutableBlock ty (PrimState prim)
forall (n :: Nat) ty st.
MutableBlockN n ty st -> MutableBlock ty st
unMBlock MutableBlockN n ty (PrimState prim)
mb)

-- | Same as 'withMutablePtr' but allow to specify 2 optimisations
-- which is only useful when the MutableBlock is unpinned and need
-- a pinned trampoline to be called safely.
--
-- If skipCopy is True, then the first copy which happen before
-- the call to 'f', is skipped. The Ptr is now effectively
-- pointing to uninitialized data in a new mutable Block.
--
-- If skipCopyBack is True, then the second copy which happen after
-- the call to 'f', is skipped. Then effectively in the case of a
-- trampoline being used the memory changed by 'f' will not
-- be reflected in the original Mutable Block.
--
-- If using the wrong parameters, it will lead to difficult to
-- debug issue of corrupted buffer which only present themselves
-- with certain Mutable Block that happened to have been allocated
-- unpinned.
--
-- If unsure use 'withMutablePtr', which default to *not* skip
-- any copy.
withMutablePtrHint :: forall n ty prim a . (PrimMonad prim, KnownNat n)
                   => Bool -- ^ hint that the buffer doesn't need to have the same value as the mutable block when calling f
                   -> Bool -- ^ hint that the buffer is not supposed to be modified by call of f
                   -> MutableBlockN n ty (PrimState prim)
                   -> (Ptr ty -> prim a)
                   -> prim a
withMutablePtrHint :: forall (n :: Nat) ty (prim :: Type -> Type) a.
(PrimMonad prim, KnownNat n) =>
Bool
-> Bool
-> MutableBlockN n ty (PrimState prim)
-> (Ptr ty -> prim a)
-> prim a
withMutablePtrHint Bool
skipCopy Bool
skipCopyBack (MutableBlockN MutableBlock ty (PrimState prim)
mb) Ptr ty -> prim a
f =
    Bool
-> Bool
-> MutableBlock ty (PrimState prim)
-> (Ptr ty -> prim a)
-> prim a
forall ty (prim :: Type -> Type) a.
PrimMonad prim =>
Bool
-> Bool
-> MutableBlock ty (PrimState prim)
-> (Ptr ty -> prim a)
-> prim a
B.withMutablePtrHint Bool
skipCopy Bool
skipCopyBack MutableBlock ty (PrimState prim)
mb Ptr ty -> prim a
f