| Copyright | (c) Edward Kmett 2011-2012 (c) Paolo Martini 2007 (c) Daan Leijen 1999-2001  | 
|---|---|
| License | BSD-style | 
| Maintainer | ekmett@gmail.com | 
| Stability | provisional | 
| Portability | non-portable | 
| Safe Haskell | Safe-Inferred | 
| Language | Haskell2010 | 
Text.Parser.Permutation
Description
This module implements permutation parsers. The algorithm is described in:
Parsing Permutation Phrases, by Arthur Baars, Andres Loh and Doaitse Swierstra. Published as a functional pearl at the Haskell Workshop 2001.
Synopsis
- data Permutation (m :: Type -> Type) a
 - permute :: Alternative m => Permutation m a -> m a
 - (<||>) :: Functor m => Permutation m (a -> b) -> m a -> Permutation m b
 - (<$$>) :: Functor m => (a -> b) -> m a -> Permutation m b
 - (<|?>) :: Functor m => Permutation m (a -> b) -> (a, m a) -> Permutation m b
 - (<$?>) :: Functor m => (a -> b) -> (a, m a) -> Permutation m b
 
Documentation
data Permutation (m :: Type -> Type) a Source #
The type Permutation m a denotes a permutation parser that,
 when converted by the permute function, parses
 using the base parsing monad m and returns a value of
 type a on success.
Normally, a permutation parser is first build with special operators
 like (<||>) and than transformed into a normal parser
 using permute.
Instances
| Functor m => Functor (Permutation m) Source # | |
Defined in Text.Parser.Permutation Methods fmap :: (a -> b) -> Permutation m a -> Permutation m b # (<$) :: a -> Permutation m b -> Permutation m a #  | |
permute :: Alternative m => Permutation m a -> m a Source #
The parser permute perm parses a permutation of parser described
 by perm. For example, suppose we want to parse a permutation of:
 an optional string of a's, the character b and an optional c.
 This can be described by:
 test  = permute (tuple <$?> ("",some (char 'a'))
                        <||> char 'b'
                        <|?> ('_',char 'c'))
       where
         tuple a b c  = (a,b,c)(<||>) :: Functor m => Permutation m (a -> b) -> m a -> Permutation m b infixl 1 Source #
The expression perm <||> p adds parser p to the permutation
 parser perm. The parser p is not allowed to accept empty input -
 use the optional combinator (<|?>) instead. Returns a
 new permutation parser that includes p.
(<$$>) :: Functor m => (a -> b) -> m a -> Permutation m b infixl 2 Source #
The expression f <$$> p creates a fresh permutation parser
 consisting of parser p. The final result of the permutation
 parser is the function f applied to the return value of p. The
 parser p is not allowed to accept empty input - use the optional
 combinator (<$?>) instead.
If the function f takes more than one parameter, the type variable
 b is instantiated to a functional type which combines nicely with
 the adds parser p to the (<||>) combinator. This
 results in stylized code where a permutation parser starts with a
 combining function f followed by the parsers. The function f
 gets its parameters in the order in which the parsers are specified,
 but actual input can be in any order.
(<|?>) :: Functor m => Permutation m (a -> b) -> (a, m a) -> Permutation m b infixl 1 Source #
The expression perm <|?> (x,p) adds parser p to the
 permutation parser perm. The parser p is optional - if it can
 not be applied, the default value x will be used instead. Returns
 a new permutation parser that includes the optional parser p.
(<$?>) :: Functor m => (a -> b) -> (a, m a) -> Permutation m b infixl 2 Source #
The expression f <$?> (x,p) creates a fresh permutation parser
 consisting of parser p. The final result of the permutation
 parser is the function f applied to the return value of p. The
 parser p is optional - if it can not be applied, the default value
 x will be used instead.