| Copyright | (c) Edward Kmett 2011-2012 (c) Paolo Martini 2007 (c) Daan Leijen 1999-2001  | 
|---|---|
| License | BSD-style (see the LICENSE file) | 
| Maintainer | ekmett@gmail.com | 
| Stability | experimental | 
| Portability | non-portable | 
| Safe Haskell | None | 
| Language | Haskell2010 | 
Text.Parser.Expression
Description
A helper module to parse "expressions". Builds a parser given a table of operators and associativities.
Synopsis
- data Assoc
 - data Operator (m :: Type -> Type) a
 - type OperatorTable (m :: Type -> Type) a = [[Operator m a]]
 - buildExpressionParser :: (Parsing m, Applicative m) => OperatorTable m a -> m a -> m a
 
Documentation
This data type specifies the associativity of operators: left, right or none.
Constructors
| AssocNone | |
| AssocLeft | |
| AssocRight | 
Instances
| Data Assoc Source # | |
Defined in Text.Parser.Expression Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Assoc -> c Assoc # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Assoc # dataTypeOf :: Assoc -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Assoc) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Assoc) # gmapT :: (forall b. Data b => b -> b) -> Assoc -> Assoc # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Assoc -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Assoc -> r # gmapQ :: (forall d. Data d => d -> u) -> Assoc -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Assoc -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Assoc -> m Assoc # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Assoc -> m Assoc # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Assoc -> m Assoc #  | |
| Bounded Assoc Source # | |
| Enum Assoc Source # | |
Defined in Text.Parser.Expression  | |
| Ix Assoc Source # | |
| Read Assoc Source # | |
| Show Assoc Source # | |
| Eq Assoc Source # | |
| Ord Assoc Source # | |
data Operator (m :: Type -> Type) a Source #
This data type specifies operators that work on values of type a.
 An operator is either binary infix or unary prefix or postfix. A
 binary operator has also an associated associativity.
type OperatorTable (m :: Type -> Type) a = [[Operator m a]] Source #
An OperatorTable m a is a list of Operator m a
 lists. The list is ordered in descending
 precedence. All operators in one list have the same precedence (but
 may have a different associativity).
buildExpressionParser :: (Parsing m, Applicative m) => OperatorTable m a -> m a -> m a Source #
buildExpressionParser table term builds an expression parser for
 terms term with operators from table, taking the associativity
 and precedence specified in table into account. Prefix and postfix
 operators of the same precedence can only occur once (i.e. --2 is
 not allowed if - is prefix negate). Prefix and postfix operators
 of the same precedence associate to the left (i.e. if ++ is
 postfix increment, than -2++ equals -1, not -3).
The buildExpressionParser takes care of all the complexity
 involved in building expression parser. Here is an example of an
 expression parser that handles prefix signs, postfix increment and
 basic arithmetic.
 import Control.Applicative ((<|>))
 import Text.Parser.Combinators ((<?>))
 import Text.Parser.Expression
 import Text.Parser.Token (TokenParsing, natural, parens, reserve)
 import Text.Parser.Token.Style (emptyOps)
 expr   :: (Monad m, TokenParsing m) => m Integer
 expr    = buildExpressionParser table term
         <?> "expression"
 term   :: (Monad m, TokenParsing m) => m Integer
 term    =  parens expr
         <|> natural
         <?> "simple expression"
 table  :: (Monad m, TokenParsing m) => [[Operator m Integer]]
 table   = [ [prefix "-" negate, prefix "+" id ]
           , [postfix "++" (+1)]
           , [binary "*" (*) AssocLeft, binary "/" (div) AssocLeft ]
           , [binary "+" (+) AssocLeft, binary "-" (-)   AssocLeft ]
           ]
 binary  name fun assoc = Infix (fun <$ reservedOp name) assoc
 prefix  name fun       = Prefix (fun <$ reservedOp name)
 postfix name fun       = Postfix (fun <$ reservedOp name)
 reservedOp name = reserve emptyOps name