| Safe Haskell | Safe-Inferred |
|---|---|
| Language | Haskell2010 |
BasePrelude.Operators
Description
A collection of common operators provided across various modules of the "base" package.
Synopsis
- (*>) :: Applicative f => f a -> f b -> f b
- (<*) :: Applicative f => f a -> f b -> f a
- (<*>) :: Applicative f => f (a -> b) -> f a -> f b
- (<**>) :: Applicative f => f a -> f (a -> b) -> f b
- (<|>) :: Alternative f => f a -> f a -> f a
- (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- (>>) :: Monad m => m a -> m b -> m b
- (>>=) :: Monad m => m a -> (a -> m b) -> m b
- (.&.) :: Bits a => a -> a -> a
- (.|.) :: Bits a => a -> a -> a
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- (/=) :: Eq a => a -> a -> Bool
- (==) :: Eq a => a -> a -> Bool
- ($) :: (a -> b) -> a -> b
- (&) :: a -> (a -> b) -> b
- (.) :: (b -> c) -> (a -> b) -> a -> c
- ($>) :: Functor f => f a -> b -> f b
- (<$) :: Functor f => a -> f b -> f a
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- (<&>) :: Functor f => f a -> (a -> b) -> f b
- (>$) :: Contravariant f => b -> f b -> f a
- (>$<) :: Contravariant f => (a -> b) -> f b -> f a
- (>$$<) :: Contravariant f => f b -> (a -> b) -> f a
- ($<) :: Contravariant f => f b -> b -> f a
- (<) :: Ord a => a -> a -> Bool
- (<=) :: Ord a => a -> a -> Bool
- (>) :: Ord a => a -> a -> Bool
- (>=) :: Ord a => a -> a -> Bool
- (%) :: Integral a => a -> a -> Ratio a
- (<>) :: Semigroup a => a -> a -> a
- ($!) :: (a -> b) -> a -> b
- (*) :: Num a => a -> a -> a
- (+) :: Num a => a -> a -> a
- (-) :: Num a => a -> a -> a
- (/) :: Fractional a => a -> a -> a
- (^) :: (Num a, Integral b) => a -> b -> a
- (^^) :: (Fractional a, Integral b) => a -> b -> a
From Control.Applicative
(*>) :: Applicative f => f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
Examples
If used in conjunction with the Applicative instance for Maybe,
you can chain Maybe computations, with a possible "early return"
in case of Nothing.
>>>Just 2 *> Just 3Just 3
>>>Nothing *> Just 3Nothing
Of course a more interesting use case would be to have effectful computations instead of just returning pure values.
>>>import Data.Char>>>import Text.ParserCombinators.ReadP>>>let p = string "my name is " *> munch1 isAlpha <* eof>>>readP_to_S p "my name is Simon"[("Simon","")]
(<*) :: Applicative f => f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
(<*>) :: Applicative f => f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*> that is more
efficient than the default one.
Example
Used in combination with (, <$>)( can be used to build a record.<*>)
>>>data MyState = MyState {arg1 :: Foo, arg2 :: Bar, arg3 :: Baz}
>>>produceFoo :: Applicative f => f Foo
>>>produceBar :: Applicative f => f Bar>>>produceBaz :: Applicative f => f Baz
>>>mkState :: Applicative f => f MyState>>>mkState = MyState <$> produceFoo <*> produceBar <*> produceBaz
(<**>) :: Applicative f => f a -> f (a -> b) -> f b infixl 4 #
(<|>) :: Alternative f => f a -> f a -> f a infixl 3 #
An associative binary operation
From Control.Monad
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=, but with the arguments interchanged.
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 #
Left-to-right composition of Kleisli arrows.
'(bs ' can be understood as the >=> cs) ado expression
do b <- bs a cs b
(>>) :: Monad m => m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
'as ' can be understood as the >> bsdo expression
do as bs
(>>=) :: Monad m => m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
'as ' can be understood as the >>= bsdo expression
do a <- as bs a
From Data.Bits
From Data.Bool
From Data.Function
($) :: (a -> b) -> a -> b infixr 0 #
is the function application operator.($)
Applying to a function ($)f and an argument x gives the same result as applying f to x directly. The definition is akin to this:
($) :: (a -> b) -> a -> b ($) f x = f x
This is specialized from ida -> a to (a -> b) -> (a -> b) which by the associativity of (->)
is the same as (a -> b) -> a -> b.
On the face of it, this may appear pointless! But it's actually one of the most useful and important operators in Haskell.
The order of operations is very different between ($) and normal function application. Normal function application has precedence 10 - higher than any operator - and associates to the left. So these two definitions are equivalent:
expr = min 5 1 + 5 expr = ((min 5) 1) + 5
($) has precedence 0 (the lowest) and associates to the right, so these are equivalent:
expr = min 5 $ 1 + 5 expr = (min 5) (1 + 5)
Examples
A common use cases of ($) is to avoid parentheses in complex expressions.
For example, instead of using nested parentheses in the following Haskell function:
-- | Sum numbers in a string: strSum "100 5 -7" == 98 strSum ::String->IntstrSum s =sum(mapMaybereadMaybe(wordss))
we can deploy the function application operator:
-- | Sum numbers in a string: strSum "100 5 -7" == 98 strSum ::String->IntstrSum s =sum$mapMaybereadMaybe$wordss
($) is also used as a section (a partially applied operator), in order to indicate that we wish to apply some yet-unspecified function to a given value. For example, to apply the argument 5 to a list of functions:
applyFive :: [Int] applyFive = map ($ 5) [(+1), (2^)] >>> [6, 32]
Technical Remark (Representation Polymorphism)
($) is fully representation-polymorphic. This allows it to also be used with arguments of unlifted and even unboxed kinds, such as unboxed integers:
fastMod :: Int -> Int -> Int fastMod (I# x) (I# m) = I# $ remInt# x m
(&) :: a -> (a -> b) -> b infixl 1 #
& is a reverse application operator. This provides notational
convenience. Its precedence is one higher than that of the forward
application operator $, which allows & to be nested in $.
This is a version of , where flip idid is specialized from a -> a to (a -> b) -> (a -> b)
which by the associativity of (->) is (a -> b) -> a -> b.
flipping this yields a -> (a -> b) -> b which is the type signature of &
Examples
>>>5 & (+1) & show"6"
>>>sqrt $ [1 / n^2 | n <- [1..1000]] & sum & (*6)3.1406380562059946
Since: base-4.8.0.0
(.) :: (b -> c) -> (a -> b) -> a -> c infixr 9 #
Right to left function composition.
(f . g) x = f (g x)
f . id = f = id . f
Examples
>>>map ((*2) . length) [[], [0, 1, 2], [0]][0,6,2]
>>>foldr (.) id [(+1), (*3), (^3)] 225
>>>let (...) = (.).(.) in ((*2)...(+)) 5 1030
From Data.Functor
($>) :: Functor f => f a -> b -> f b infixl 4 #
Flipped version of <$.
Examples
Replace the contents of a with a constant
Maybe IntString:
>>>Nothing $> "foo"Nothing>>>Just 90210 $> "foo"Just "foo"
Replace the contents of an
with a constant Either Int IntString, resulting in an :Either
Int String
>>>Left 8675309 $> "foo"Left 8675309>>>Right 8675309 $> "foo"Right "foo"
Replace each element of a list with a constant String:
>>>[1,2,3] $> "foo"["foo","foo","foo"]
Replace the second element of a pair with a constant String:
>>>(1,2) $> "foo"(1,"foo")
Since: base-4.7.0.0
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap.
The name of this operator is an allusion to $.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function
application lifted over a Functor.
Examples
Convert from a to a Maybe Int using Maybe
Stringshow:
>>>show <$> NothingNothing>>>show <$> Just 3Just "3"
Convert from an to an
Either Int IntEither IntString using show:
>>>show <$> Left 17Left 17>>>show <$> Right 17Right "17"
Double each element of a list:
>>>(*2) <$> [1,2,3][2,4,6]
Apply even to the second element of a pair:
>>>even <$> (2,2)(2,True)
From Data.Functor.Contravariant
(>$) :: Contravariant f => b -> f b -> f a infixl 4 #
(>$<) :: Contravariant f => (a -> b) -> f b -> f a infixl 4 #
This is an infix alias for contramap.
(>$$<) :: Contravariant f => f b -> (a -> b) -> f a infixl 4 #
This is an infix version of contramap with the arguments flipped.
($<) :: Contravariant f => f b -> b -> f a infixl 4 #
This is >$ with its arguments flipped.
From Data.Ord
From Data.Ratio
From Data.Semigroup
(<>) :: Semigroup a => a -> a -> a infixr 6 #
An associative operation.
Examples
>>>[1,2,3] <> [4,5,6][1,2,3,4,5,6]
>>>Just [1, 2, 3] <> Just [4, 5, 6]Just [1,2,3,4,5,6]
>>>putStr "Hello, " <> putStrLn "World!"Hello, World!
From Prelude
($!) :: (a -> b) -> a -> b infixr 0 #
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
(/) :: Fractional a => a -> a -> a infixl 7 #
Fractional division.
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #
raise a number to an integral power