module Statistics.Resampling.Bootstrap
( bootstrapBCA
, basicBootstrap
) where
import Data.Vector.Generic ((!))
import qualified Data.Vector.Unboxed as U
import qualified Data.Vector.Generic as G
import Statistics.Distribution (cumulative, quantile)
import Statistics.Distribution.Normal
import Statistics.Resampling (Bootstrap(..), jackknife)
import Statistics.Sample (mean)
import Statistics.Types (Sample, CL, Estimate, ConfInt, estimateFromInterval,
estimateFromErr, CL, significanceLevel)
import Statistics.Function (gsort)
import qualified Statistics.Resampling as R
import Control.Parallel.Strategies (parMap, rdeepseq)
data T = {-# UNPACK #-} !Double :< {-# UNPACK #-} !Double
infixl 2 :<
bootstrapBCA
:: CL Double
-> Sample
-> [(R.Estimator, Bootstrap U.Vector Double)]
-> [Estimate ConfInt Double]
bootstrapBCA :: CL Double
-> Sample
-> [(Estimator, Bootstrap Vector Double)]
-> [Estimate ConfInt Double]
bootstrapBCA CL Double
confidenceLevel Sample
sample [(Estimator, Bootstrap Vector Double)]
resampledData
= Strategy (Estimate ConfInt Double)
-> ((Estimator, Bootstrap Vector Double)
-> Estimate ConfInt Double)
-> [(Estimator, Bootstrap Vector Double)]
-> [Estimate ConfInt Double]
forall b a. Strategy b -> (a -> b) -> [a] -> [b]
parMap Strategy (Estimate ConfInt Double)
forall a. NFData a => Strategy a
rdeepseq (Estimator, Bootstrap Vector Double) -> Estimate ConfInt Double
forall {a}.
(Num a, Unbox a, Ord a) =>
(Estimator, Bootstrap Vector a) -> Estimate ConfInt a
e [(Estimator, Bootstrap Vector Double)]
resampledData
where
e :: (Estimator, Bootstrap Vector a) -> Estimate ConfInt a
e (Estimator
est, Bootstrap a
pt Vector a
resample)
| Sample -> Int
forall a. Unbox a => Vector a -> Int
U.length Sample
sample Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 Bool -> Bool -> Bool
|| Double -> Bool
forall a. RealFloat a => a -> Bool
isInfinite Double
bias =
a -> (a, a) -> CL Double -> Estimate ConfInt a
forall a. a -> (a, a) -> CL Double -> Estimate ConfInt a
estimateFromErr a
pt (a
0,a
0) CL Double
confidenceLevel
| Bool
otherwise =
a -> (a, a) -> CL Double -> Estimate ConfInt a
forall a. Num a => a -> (a, a) -> CL Double -> Estimate ConfInt a
estimateFromInterval a
pt (Vector a
resample Vector a -> Int -> a
forall (v :: * -> *) a.
(HasCallStack, Vector v a) =>
v a -> Int -> a
! Int
lo, Vector a
resample Vector a -> Int -> a
forall (v :: * -> *) a.
(HasCallStack, Vector v a) =>
v a -> Int -> a
! Int
hi) CL Double
confidenceLevel
where
lo :: Int
lo = Int -> Int -> Int
forall a. Ord a => a -> a -> a
min (Int -> Int -> Int
forall a. Ord a => a -> a -> a
max (Double -> Int
cumn Double
a1) Int
0) (Int
ni Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
where a1 :: Double
a1 = Double
bias Double -> Double -> Double
forall a. Num a => a -> a -> a
+ Double
b1 Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ (Double
1 Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double
accel Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double
b1)
b1 :: Double
b1 = Double
bias Double -> Double -> Double
forall a. Num a => a -> a -> a
+ Double
z1
hi :: Int
hi = Int -> Int -> Int
forall a. Ord a => a -> a -> a
max (Int -> Int -> Int
forall a. Ord a => a -> a -> a
min (Double -> Int
cumn Double
a2) (Int
ni Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)) Int
0
where a2 :: Double
a2 = Double
bias Double -> Double -> Double
forall a. Num a => a -> a -> a
+ Double
b2 Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ (Double
1 Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double
accel Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double
b2)
b2 :: Double
b2 = Double
bias Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double
z1
ni :: Int
ni = Vector a -> Int
forall a. Unbox a => Vector a -> Int
U.length Vector a
resample
n :: Double
n = Int -> Double
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
ni
z1 :: Double
z1 = NormalDistribution -> Double -> Double
forall d. ContDistr d => d -> Double -> Double
quantile NormalDistribution
standard (CL Double -> Double
forall a. CL a -> a
significanceLevel CL Double
confidenceLevel Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ Double
2)
cumn :: Double -> Int
cumn = Double -> Int
forall b. Integral b => Double -> b
forall a b. (RealFrac a, Integral b) => a -> b
round (Double -> Int) -> (Double -> Double) -> Double -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Double -> Double -> Double
forall a. Num a => a -> a -> a
*Double
n) (Double -> Double) -> (Double -> Double) -> Double -> Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NormalDistribution -> Double -> Double
forall d. Distribution d => d -> Double -> Double
cumulative NormalDistribution
standard
bias :: Double
bias = NormalDistribution -> Double -> Double
forall d. ContDistr d => d -> Double -> Double
quantile NormalDistribution
standard (Double
probN Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ Double
n)
where probN :: Double
probN = Int -> Double
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int -> Double) -> (Vector a -> Int) -> Vector a -> Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Vector a -> Int
forall a. Unbox a => Vector a -> Int
U.length (Vector a -> Int) -> (Vector a -> Vector a) -> Vector a -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> Bool) -> Vector a -> Vector a
forall a. Unbox a => (a -> Bool) -> Vector a -> Vector a
U.filter (a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<a
pt) (Vector a -> Double) -> Vector a -> Double
forall a b. (a -> b) -> a -> b
$ Vector a
resample
accel :: Double
accel = Double
sumCubes Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ (Double
6 Double -> Double -> Double
forall a. Num a => a -> a -> a
* (Double
sumSquares Double -> Double -> Double
forall a. Floating a => a -> a -> a
** Double
1.5))
where (Double
sumSquares :< Double
sumCubes) = (T -> Double -> T) -> T -> Sample -> T
forall b a. Unbox b => (a -> b -> a) -> a -> Vector b -> a
U.foldl' T -> Double -> T
f (Double
0 Double -> Double -> T
:< Double
0) Sample
jack
f :: T -> Double -> T
f (Double
s :< Double
c) Double
j = Double
s Double -> Double -> Double
forall a. Num a => a -> a -> a
+ Double
d2 Double -> Double -> T
:< Double
c Double -> Double -> Double
forall a. Num a => a -> a -> a
+ Double
d2 Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double
d
where d :: Double
d = Double
jackMean Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double
j
d2 :: Double
d2 = Double
d Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double
d
jackMean :: Double
jackMean = Sample -> Double
forall (v :: * -> *). Vector v Double => v Double -> Double
mean Sample
jack
jack :: Sample
jack = Estimator -> Sample -> Sample
jackknife Estimator
est Sample
sample
basicBootstrap
:: (G.Vector v a, Ord a, Num a)
=> CL Double
-> Bootstrap v a
-> Estimate ConfInt a
{-# INLINE basicBootstrap #-}
basicBootstrap :: forall (v :: * -> *) a.
(Vector v a, Ord a, Num a) =>
CL Double -> Bootstrap v a -> Estimate ConfInt a
basicBootstrap CL Double
cl (Bootstrap a
e v a
ests)
= a -> (a, a) -> CL Double -> Estimate ConfInt a
forall a. Num a => a -> (a, a) -> CL Double -> Estimate ConfInt a
estimateFromInterval a
e (v a
sorted v a -> Int -> a
forall (v :: * -> *) a.
(HasCallStack, Vector v a) =>
v a -> Int -> a
! Int
lo, v a
sorted v a -> Int -> a
forall (v :: * -> *) a.
(HasCallStack, Vector v a) =>
v a -> Int -> a
! Int
hi) CL Double
cl
where
sorted :: v a
sorted = v a -> v a
forall e (v :: * -> *). (Ord e, Vector v e) => v e -> v e
gsort v a
ests
n :: Double
n = Int -> Double
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int -> Double) -> Int -> Double
forall a b. (a -> b) -> a -> b
$ v a -> Int
forall (v :: * -> *) a. Vector v a => v a -> Int
G.length v a
ests
c :: Double
c = Double
n Double -> Double -> Double
forall a. Num a => a -> a -> a
* (CL Double -> Double
forall a. CL a -> a
significanceLevel CL Double
cl Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ Double
2)
lo :: Int
lo = Double -> Int
forall b. Integral b => Double -> b
forall a b. (RealFrac a, Integral b) => a -> b
round Double
c
hi :: Int
hi = Double -> Int
forall b. Integral b => Double -> b
forall a b. (RealFrac a, Integral b) => a -> b
truncate (Double
n Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double
c)