{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveDataTypeable, DeriveGeneric #-}
module Statistics.Distribution.Beta
( BetaDistribution
, betaDistr
, betaDistrE
, improperBetaDistr
, improperBetaDistrE
, bdAlpha
, bdBeta
) where
import Control.Applicative
import Data.Aeson (FromJSON(..), ToJSON, Value(..), (.:))
import Data.Binary (Binary(..))
import Data.Data (Data, Typeable)
import GHC.Generics (Generic)
import Numeric.SpecFunctions (
incompleteBeta, invIncompleteBeta, logBeta, digamma, log1p)
import Numeric.MathFunctions.Constants (m_NaN,m_neg_inf)
import qualified Statistics.Distribution as D
import Statistics.Internal
data BetaDistribution = BD
{ BetaDistribution -> Double
bdAlpha :: {-# UNPACK #-} !Double
, BetaDistribution -> Double
bdBeta :: {-# UNPACK #-} !Double
} deriving (BetaDistribution -> BetaDistribution -> Bool
(BetaDistribution -> BetaDistribution -> Bool)
-> (BetaDistribution -> BetaDistribution -> Bool)
-> Eq BetaDistribution
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: BetaDistribution -> BetaDistribution -> Bool
== :: BetaDistribution -> BetaDistribution -> Bool
$c/= :: BetaDistribution -> BetaDistribution -> Bool
/= :: BetaDistribution -> BetaDistribution -> Bool
Eq, Typeable, Typeable BetaDistribution
Typeable BetaDistribution =>
(forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> BetaDistribution -> c BetaDistribution)
-> (forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c BetaDistribution)
-> (BetaDistribution -> Constr)
-> (BetaDistribution -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c BetaDistribution))
-> (forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c BetaDistribution))
-> ((forall b. Data b => b -> b)
-> BetaDistribution -> BetaDistribution)
-> (forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> BetaDistribution -> r)
-> (forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> BetaDistribution -> r)
-> (forall u.
(forall d. Data d => d -> u) -> BetaDistribution -> [u])
-> (forall u.
Int -> (forall d. Data d => d -> u) -> BetaDistribution -> u)
-> (forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> BetaDistribution -> m BetaDistribution)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> BetaDistribution -> m BetaDistribution)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> BetaDistribution -> m BetaDistribution)
-> Data BetaDistribution
BetaDistribution -> Constr
BetaDistribution -> DataType
(forall b. Data b => b -> b)
-> BetaDistribution -> BetaDistribution
forall a.
Typeable a =>
(forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u.
Int -> (forall d. Data d => d -> u) -> BetaDistribution -> u
forall u. (forall d. Data d => d -> u) -> BetaDistribution -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> BetaDistribution -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> BetaDistribution -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> BetaDistribution -> m BetaDistribution
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> BetaDistribution -> m BetaDistribution
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c BetaDistribution
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> BetaDistribution -> c BetaDistribution
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c BetaDistribution)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c BetaDistribution)
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> BetaDistribution -> c BetaDistribution
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> BetaDistribution -> c BetaDistribution
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c BetaDistribution
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c BetaDistribution
$ctoConstr :: BetaDistribution -> Constr
toConstr :: BetaDistribution -> Constr
$cdataTypeOf :: BetaDistribution -> DataType
dataTypeOf :: BetaDistribution -> DataType
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c BetaDistribution)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c BetaDistribution)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c BetaDistribution)
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c BetaDistribution)
$cgmapT :: (forall b. Data b => b -> b)
-> BetaDistribution -> BetaDistribution
gmapT :: (forall b. Data b => b -> b)
-> BetaDistribution -> BetaDistribution
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> BetaDistribution -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> BetaDistribution -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> BetaDistribution -> r
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> BetaDistribution -> r
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> BetaDistribution -> [u]
gmapQ :: forall u. (forall d. Data d => d -> u) -> BetaDistribution -> [u]
$cgmapQi :: forall u.
Int -> (forall d. Data d => d -> u) -> BetaDistribution -> u
gmapQi :: forall u.
Int -> (forall d. Data d => d -> u) -> BetaDistribution -> u
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> BetaDistribution -> m BetaDistribution
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> BetaDistribution -> m BetaDistribution
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> BetaDistribution -> m BetaDistribution
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> BetaDistribution -> m BetaDistribution
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> BetaDistribution -> m BetaDistribution
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> BetaDistribution -> m BetaDistribution
Data, (forall x. BetaDistribution -> Rep BetaDistribution x)
-> (forall x. Rep BetaDistribution x -> BetaDistribution)
-> Generic BetaDistribution
forall x. Rep BetaDistribution x -> BetaDistribution
forall x. BetaDistribution -> Rep BetaDistribution x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cfrom :: forall x. BetaDistribution -> Rep BetaDistribution x
from :: forall x. BetaDistribution -> Rep BetaDistribution x
$cto :: forall x. Rep BetaDistribution x -> BetaDistribution
to :: forall x. Rep BetaDistribution x -> BetaDistribution
Generic)
instance Show BetaDistribution where
showsPrec :: Int -> BetaDistribution -> ShowS
showsPrec Int
n (BD Double
a Double
b) = [Char] -> Double -> Double -> Int -> ShowS
forall a b. (Show a, Show b) => [Char] -> a -> b -> Int -> ShowS
defaultShow2 [Char]
"improperBetaDistr" Double
a Double
b Int
n
instance Read BetaDistribution where
readPrec :: ReadPrec BetaDistribution
readPrec = [Char]
-> (Double -> Double -> Maybe BetaDistribution)
-> ReadPrec BetaDistribution
forall a b r.
(Read a, Read b) =>
[Char] -> (a -> b -> Maybe r) -> ReadPrec r
defaultReadPrecM2 [Char]
"improperBetaDistr" Double -> Double -> Maybe BetaDistribution
improperBetaDistrE
instance ToJSON BetaDistribution
instance FromJSON BetaDistribution where
parseJSON :: Value -> Parser BetaDistribution
parseJSON (Object Object
v) = do
Double
a <- Object
v Object -> Key -> Parser Double
forall a. FromJSON a => Object -> Key -> Parser a
.: Key
"bdAlpha"
Double
b <- Object
v Object -> Key -> Parser Double
forall a. FromJSON a => Object -> Key -> Parser a
.: Key
"bdBeta"
Parser BetaDistribution
-> (BetaDistribution -> Parser BetaDistribution)
-> Maybe BetaDistribution
-> Parser BetaDistribution
forall b a. b -> (a -> b) -> Maybe a -> b
maybe ([Char] -> Parser BetaDistribution
forall a. [Char] -> Parser a
forall (m :: * -> *) a. MonadFail m => [Char] -> m a
fail ([Char] -> Parser BetaDistribution)
-> [Char] -> Parser BetaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> [Char]
errMsgI Double
a Double
b) BetaDistribution -> Parser BetaDistribution
forall a. a -> Parser a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe BetaDistribution -> Parser BetaDistribution)
-> Maybe BetaDistribution -> Parser BetaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> Maybe BetaDistribution
improperBetaDistrE Double
a Double
b
parseJSON Value
_ = Parser BetaDistribution
forall a. Parser a
forall (f :: * -> *) a. Alternative f => f a
empty
instance Binary BetaDistribution where
put :: BetaDistribution -> Put
put (BD Double
a Double
b) = Double -> Put
forall t. Binary t => t -> Put
put Double
a Put -> Put -> Put
forall a b. PutM a -> PutM b -> PutM b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Double -> Put
forall t. Binary t => t -> Put
put Double
b
get :: Get BetaDistribution
get = do
Double
a <- Get Double
forall t. Binary t => Get t
get
Double
b <- Get Double
forall t. Binary t => Get t
get
Get BetaDistribution
-> (BetaDistribution -> Get BetaDistribution)
-> Maybe BetaDistribution
-> Get BetaDistribution
forall b a. b -> (a -> b) -> Maybe a -> b
maybe ([Char] -> Get BetaDistribution
forall a. [Char] -> Get a
forall (m :: * -> *) a. MonadFail m => [Char] -> m a
fail ([Char] -> Get BetaDistribution) -> [Char] -> Get BetaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> [Char]
errMsgI Double
a Double
b) BetaDistribution -> Get BetaDistribution
forall a. a -> Get a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe BetaDistribution -> Get BetaDistribution)
-> Maybe BetaDistribution -> Get BetaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> Maybe BetaDistribution
improperBetaDistrE Double
a Double
b
betaDistr :: Double
-> Double
-> BetaDistribution
betaDistr :: Double -> Double -> BetaDistribution
betaDistr Double
a Double
b = BetaDistribution
-> (BetaDistribution -> BetaDistribution)
-> Maybe BetaDistribution
-> BetaDistribution
forall b a. b -> (a -> b) -> Maybe a -> b
maybe ([Char] -> BetaDistribution
forall a. HasCallStack => [Char] -> a
error ([Char] -> BetaDistribution) -> [Char] -> BetaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> [Char]
errMsg Double
a Double
b) BetaDistribution -> BetaDistribution
forall a. a -> a
id (Maybe BetaDistribution -> BetaDistribution)
-> Maybe BetaDistribution -> BetaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> Maybe BetaDistribution
betaDistrE Double
a Double
b
betaDistrE :: Double
-> Double
-> Maybe BetaDistribution
betaDistrE :: Double -> Double -> Maybe BetaDistribution
betaDistrE Double
a Double
b
| Double
a Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
> Double
0 Bool -> Bool -> Bool
&& Double
b Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
> Double
0 = BetaDistribution -> Maybe BetaDistribution
forall a. a -> Maybe a
Just (Double -> Double -> BetaDistribution
BD Double
a Double
b)
| Bool
otherwise = Maybe BetaDistribution
forall a. Maybe a
Nothing
errMsg :: Double -> Double -> String
errMsg :: Double -> Double -> [Char]
errMsg Double
a Double
b = [Char]
"Statistics.Distribution.Beta.betaDistr: "
[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ [Char]
"shape parameters must be positive. Got a = "
[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Double -> [Char]
forall a. Show a => a -> [Char]
show Double
a
[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ [Char]
" b = "
[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Double -> [Char]
forall a. Show a => a -> [Char]
show Double
b
improperBetaDistr :: Double
-> Double
-> BetaDistribution
improperBetaDistr :: Double -> Double -> BetaDistribution
improperBetaDistr Double
a Double
b
= BetaDistribution
-> (BetaDistribution -> BetaDistribution)
-> Maybe BetaDistribution
-> BetaDistribution
forall b a. b -> (a -> b) -> Maybe a -> b
maybe ([Char] -> BetaDistribution
forall a. HasCallStack => [Char] -> a
error ([Char] -> BetaDistribution) -> [Char] -> BetaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> [Char]
errMsgI Double
a Double
b) BetaDistribution -> BetaDistribution
forall a. a -> a
id (Maybe BetaDistribution -> BetaDistribution)
-> Maybe BetaDistribution -> BetaDistribution
forall a b. (a -> b) -> a -> b
$ Double -> Double -> Maybe BetaDistribution
improperBetaDistrE Double
a Double
b
improperBetaDistrE :: Double
-> Double
-> Maybe BetaDistribution
improperBetaDistrE :: Double -> Double -> Maybe BetaDistribution
improperBetaDistrE Double
a Double
b
| Double
a Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
>= Double
0 Bool -> Bool -> Bool
&& Double
b Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
>= Double
0 = BetaDistribution -> Maybe BetaDistribution
forall a. a -> Maybe a
Just (Double -> Double -> BetaDistribution
BD Double
a Double
b)
| Bool
otherwise = Maybe BetaDistribution
forall a. Maybe a
Nothing
errMsgI :: Double -> Double -> String
errMsgI :: Double -> Double -> [Char]
errMsgI Double
a Double
b
= [Char]
"Statistics.Distribution.Beta.betaDistr: "
[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ [Char]
"shape parameters must be non-negative. Got a = " [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Double -> [Char]
forall a. Show a => a -> [Char]
show Double
a
[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ [Char]
" b = " [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Double -> [Char]
forall a. Show a => a -> [Char]
show Double
b
instance D.Distribution BetaDistribution where
cumulative :: BetaDistribution -> Double -> Double
cumulative (BD Double
a Double
b) Double
x
| Double
x Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
<= Double
0 = Double
0
| Double
x Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
>= Double
1 = Double
1
| Bool
otherwise = Double -> Double -> Double -> Double
incompleteBeta Double
a Double
b Double
x
complCumulative :: BetaDistribution -> Double -> Double
complCumulative (BD Double
a Double
b) Double
x
| Double
x Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
<= Double
0 = Double
1
| Double
x Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
>= Double
1 = Double
0
| Double
x Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
< Double
0.5 = Double
1 Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double -> Double -> Double -> Double
incompleteBeta Double
a Double
b Double
x
| Bool
otherwise = Double -> Double -> Double -> Double
incompleteBeta Double
b Double
a (Double
1Double -> Double -> Double
forall a. Num a => a -> a -> a
-Double
x)
instance D.Mean BetaDistribution where
mean :: BetaDistribution -> Double
mean (BD Double
a Double
b) = Double
a Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ (Double
a Double -> Double -> Double
forall a. Num a => a -> a -> a
+ Double
b)
instance D.MaybeMean BetaDistribution where
maybeMean :: BetaDistribution -> Maybe Double
maybeMean = Double -> Maybe Double
forall a. a -> Maybe a
Just (Double -> Maybe Double)
-> (BetaDistribution -> Double) -> BetaDistribution -> Maybe Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. BetaDistribution -> Double
forall d. Mean d => d -> Double
D.mean
instance D.Variance BetaDistribution where
variance :: BetaDistribution -> Double
variance (BD Double
a Double
b) = Double
aDouble -> Double -> Double
forall a. Num a => a -> a -> a
*Double
b Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ (Double
apbDouble -> Double -> Double
forall a. Num a => a -> a -> a
*Double
apbDouble -> Double -> Double
forall a. Num a => a -> a -> a
*(Double
apbDouble -> Double -> Double
forall a. Num a => a -> a -> a
+Double
1))
where apb :: Double
apb = Double
a Double -> Double -> Double
forall a. Num a => a -> a -> a
+ Double
b
instance D.MaybeVariance BetaDistribution where
maybeVariance :: BetaDistribution -> Maybe Double
maybeVariance = Double -> Maybe Double
forall a. a -> Maybe a
Just (Double -> Maybe Double)
-> (BetaDistribution -> Double) -> BetaDistribution -> Maybe Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. BetaDistribution -> Double
forall d. Variance d => d -> Double
D.variance
instance D.Entropy BetaDistribution where
entropy :: BetaDistribution -> Double
entropy (BD Double
a Double
b) =
Double -> Double -> Double
logBeta Double
a Double
b
Double -> Double -> Double
forall a. Num a => a -> a -> a
- (Double
aDouble -> Double -> Double
forall a. Num a => a -> a -> a
-Double
1) Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double -> Double
digamma Double
a
Double -> Double -> Double
forall a. Num a => a -> a -> a
- (Double
bDouble -> Double -> Double
forall a. Num a => a -> a -> a
-Double
1) Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double -> Double
digamma Double
b
Double -> Double -> Double
forall a. Num a => a -> a -> a
+ (Double
aDouble -> Double -> Double
forall a. Num a => a -> a -> a
+Double
bDouble -> Double -> Double
forall a. Num a => a -> a -> a
-Double
2) Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double -> Double
digamma (Double
aDouble -> Double -> Double
forall a. Num a => a -> a -> a
+Double
b)
instance D.MaybeEntropy BetaDistribution where
maybeEntropy :: BetaDistribution -> Maybe Double
maybeEntropy = Double -> Maybe Double
forall a. a -> Maybe a
Just (Double -> Maybe Double)
-> (BetaDistribution -> Double) -> BetaDistribution -> Maybe Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. BetaDistribution -> Double
forall d. Entropy d => d -> Double
D.entropy
instance D.ContDistr BetaDistribution where
density :: BetaDistribution -> Double -> Double
density (BD Double
a Double
b) Double
x
| Double
a Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
<= Double
0 Bool -> Bool -> Bool
|| Double
b Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
<= Double
0 = Double
m_NaN
| Double
x Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
<= Double
0 = Double
0
| Double
x Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
>= Double
1 = Double
0
| Bool
otherwise = Double -> Double
forall a. Floating a => a -> a
exp (Double -> Double) -> Double -> Double
forall a b. (a -> b) -> a -> b
$ (Double
aDouble -> Double -> Double
forall a. Num a => a -> a -> a
-Double
1)Double -> Double -> Double
forall a. Num a => a -> a -> a
*Double -> Double
forall a. Floating a => a -> a
log Double
x Double -> Double -> Double
forall a. Num a => a -> a -> a
+ (Double
bDouble -> Double -> Double
forall a. Num a => a -> a -> a
-Double
1) Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double -> Double
forall a. Floating a => a -> a
log1p (-Double
x) Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double -> Double -> Double
logBeta Double
a Double
b
logDensity :: BetaDistribution -> Double -> Double
logDensity (BD Double
a Double
b) Double
x
| Double
a Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
<= Double
0 Bool -> Bool -> Bool
|| Double
b Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
<= Double
0 = Double
m_NaN
| Double
x Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
<= Double
0 = Double
m_neg_inf
| Double
x Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
>= Double
1 = Double
m_neg_inf
| Bool
otherwise = (Double
aDouble -> Double -> Double
forall a. Num a => a -> a -> a
-Double
1)Double -> Double -> Double
forall a. Num a => a -> a -> a
*Double -> Double
forall a. Floating a => a -> a
log Double
x Double -> Double -> Double
forall a. Num a => a -> a -> a
+ (Double
bDouble -> Double -> Double
forall a. Num a => a -> a -> a
-Double
1)Double -> Double -> Double
forall a. Num a => a -> a -> a
*Double -> Double
forall a. Floating a => a -> a
log1p (-Double
x) Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double -> Double -> Double
logBeta Double
a Double
b
quantile :: BetaDistribution -> Double -> Double
quantile (BD Double
a Double
b) Double
p
| Double
p Double -> Double -> Bool
forall a. Eq a => a -> a -> Bool
== Double
0 = Double
0
| Double
p Double -> Double -> Bool
forall a. Eq a => a -> a -> Bool
== Double
1 = Double
1
| Double
p Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
> Double
0 Bool -> Bool -> Bool
&& Double
p Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
< Double
1 = Double -> Double -> Double -> Double
invIncompleteBeta Double
a Double
b Double
p
| Bool
otherwise =
[Char] -> Double
forall a. HasCallStack => [Char] -> a
error ([Char] -> Double) -> [Char] -> Double
forall a b. (a -> b) -> a -> b
$ [Char]
"Statistics.Distribution.Gamma.quantile: p must be in [0,1] range. Got: "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++Double -> [Char]
forall a. Show a => a -> [Char]
show Double
p
instance D.ContGen BetaDistribution where
genContVar :: forall g (m :: * -> *).
StatefulGen g m =>
BetaDistribution -> g -> m Double
genContVar = BetaDistribution -> g -> m Double
forall d g (m :: * -> *).
(ContDistr d, StatefulGen g m) =>
d -> g -> m Double
D.genContinuous