Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
BasePrelude.Operators
Description
A collection of common operators provided across various modules of the "base" package.
Synopsis
- (*>) :: Applicative f => f a -> f b -> f b
- (<*) :: Applicative f => f a -> f b -> f a
- (<*>) :: Applicative f => f (a -> b) -> f a -> f b
- (<**>) :: Applicative f => f a -> f (a -> b) -> f b
- (<|>) :: Alternative f => f a -> f a -> f a
- (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- (>>) :: Monad m => m a -> m b -> m b
- (>>=) :: Monad m => m a -> (a -> m b) -> m b
- (.&.) :: Bits a => a -> a -> a
- (.|.) :: Bits a => a -> a -> a
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- (/=) :: Eq a => a -> a -> Bool
- (==) :: Eq a => a -> a -> Bool
- ($) :: (a -> b) -> a -> b
- (&) :: a -> (a -> b) -> b
- (.) :: (b -> c) -> (a -> b) -> a -> c
- ($>) :: Functor f => f a -> b -> f b
- (<$) :: Functor f => a -> f b -> f a
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- (<&>) :: Functor f => f a -> (a -> b) -> f b
- (>$) :: Contravariant f => b -> f b -> f a
- (>$<) :: Contravariant f => (a -> b) -> f b -> f a
- (>$$<) :: Contravariant f => f b -> (a -> b) -> f a
- ($<) :: Contravariant f => f b -> b -> f a
- (<) :: Ord a => a -> a -> Bool
- (<=) :: Ord a => a -> a -> Bool
- (>) :: Ord a => a -> a -> Bool
- (>=) :: Ord a => a -> a -> Bool
- (%) :: Integral a => a -> a -> Ratio a
- (<>) :: Semigroup a => a -> a -> a
- ($!) :: (a -> b) -> a -> b
- (*) :: Num a => a -> a -> a
- (+) :: Num a => a -> a -> a
- (-) :: Num a => a -> a -> a
- (/) :: Fractional a => a -> a -> a
- (^) :: (Num a, Integral b) => a -> b -> a
- (^^) :: (Fractional a, Integral b) => a -> b -> a
From Control.Applicative
(*>) :: Applicative f => f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
Examples
If used in conjunction with the Applicative instance for Maybe
,
you can chain Maybe computations, with a possible "early return"
in case of Nothing
.
>>>
Just 2 *> Just 3
Just 3
>>>
Nothing *> Just 3
Nothing
Of course a more interesting use case would be to have effectful computations instead of just returning pure values.
>>>
import Data.Char
>>>
import Text.ParserCombinators.ReadP
>>>
let p = string "my name is " *> munch1 isAlpha <* eof
>>>
readP_to_S p "my name is Simon"
[("Simon","")]
(<*) :: Applicative f => f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
(<*>) :: Applicative f => f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*>
that is more
efficient than the default one.
Example
Used in combination with (
, <$>
)(
can be used to build a record.<*>
)
>>>
data MyState = MyState {arg1 :: Foo, arg2 :: Bar, arg3 :: Baz}
>>>
produceFoo :: Applicative f => f Foo
>>>
produceBar :: Applicative f => f Bar
>>>
produceBaz :: Applicative f => f Baz
>>>
mkState :: Applicative f => f MyState
>>>
mkState = MyState <$> produceFoo <*> produceBar <*> produceBaz
(<**>) :: Applicative f => f a -> f (a -> b) -> f b infixl 4 #
(<|>) :: Alternative f => f a -> f a -> f a infixl 3 #
An associative binary operation
From Control.Monad
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=
, but with the arguments interchanged.
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 #
Left-to-right composition of Kleisli arrows.
'(bs
' can be understood as the >=>
cs) ado
expression
do b <- bs a cs b
(>>) :: Monad m => m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
'as
' can be understood as the >>
bsdo
expression
do as bs
(>>=) :: Monad m => m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
'as
' can be understood as the >>=
bsdo
expression
do a <- as bs a
From Data.Bits
From Data.Bool
From Data.Function
($) :: (a -> b) -> a -> b infixr 0 #
is the function application operator.($)
Applying
to a function ($)
f
and an argument x
gives the same result as applying f
to x
directly. The definition is akin to this:
($) :: (a -> b) -> a -> b ($) f x = f x
This is
specialized from id
a -> a
to (a -> b) -> (a -> b)
which by the associativity of (->)
is the same as (a -> b) -> a -> b
.
On the face of it, this may appear pointless! But it's actually one of the most useful and important operators in Haskell.
The order of operations is very different between ($)
and normal function application. Normal function application has precedence 10 - higher than any operator - and associates to the left. So these two definitions are equivalent:
expr = min 5 1 + 5 expr = ((min 5) 1) + 5
($)
has precedence 0 (the lowest) and associates to the right, so these are equivalent:
expr = min 5 $ 1 + 5 expr = (min 5) (1 + 5)
Examples
A common use cases of ($)
is to avoid parentheses in complex expressions.
For example, instead of using nested parentheses in the following Haskell function:
-- | Sum numbers in a string: strSum "100 5 -7" == 98 strSum ::String
->Int
strSum s =sum
(mapMaybe
readMaybe
(words
s))
we can deploy the function application operator:
-- | Sum numbers in a string: strSum "100 5 -7" == 98 strSum ::String
->Int
strSum s =sum
$
mapMaybe
readMaybe
$
words
s
($)
is also used as a section (a partially applied operator), in order to indicate that we wish to apply some yet-unspecified function to a given value. For example, to apply the argument 5
to a list of functions:
applyFive :: [Int] applyFive = map ($ 5) [(+1), (2^)] >>> [6, 32]
Technical Remark (Representation Polymorphism)
($)
is fully representation-polymorphic. This allows it to also be used with arguments of unlifted and even unboxed kinds, such as unboxed integers:
fastMod :: Int -> Int -> Int fastMod (I# x) (I# m) = I# $ remInt# x m
(&) :: a -> (a -> b) -> b infixl 1 #
&
is a reverse application operator. This provides notational
convenience. Its precedence is one higher than that of the forward
application operator $
, which allows &
to be nested in $
.
This is a version of
, where flip
id
id
is specialized from a -> a
to (a -> b) -> (a -> b)
which by the associativity of (->)
is (a -> b) -> a -> b
.
flipping this yields a -> (a -> b) -> b
which is the type signature of &
Examples
>>>
5 & (+1) & show
"6"
>>>
sqrt $ [1 / n^2 | n <- [1..1000]] & sum & (*6)
3.1406380562059946
Since: base-4.8.0.0
(.) :: (b -> c) -> (a -> b) -> a -> c infixr 9 #
Right to left function composition.
(f . g) x = f (g x)
f . id = f = id . f
Examples
>>>
map ((*2) . length) [[], [0, 1, 2], [0]]
[0,6,2]
>>>
foldr (.) id [(+1), (*3), (^3)] 2
25
>>>
let (...) = (.).(.) in ((*2)...(+)) 5 10
30
From Data.Functor
($>) :: Functor f => f a -> b -> f b infixl 4 #
Flipped version of <$
.
Examples
Replace the contents of a
with a constant
Maybe
Int
String
:
>>>
Nothing $> "foo"
Nothing>>>
Just 90210 $> "foo"
Just "foo"
Replace the contents of an
with a constant Either
Int
Int
String
, resulting in an
:Either
Int
String
>>>
Left 8675309 $> "foo"
Left 8675309>>>
Right 8675309 $> "foo"
Right "foo"
Replace each element of a list with a constant String
:
>>>
[1,2,3] $> "foo"
["foo","foo","foo"]
Replace the second element of a pair with a constant String
:
>>>
(1,2) $> "foo"
(1,"foo")
Since: base-4.7.0.0
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap
.
The name of this operator is an allusion to $
.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $
is function application, <$>
is function
application lifted over a Functor
.
Examples
Convert from a
to a Maybe
Int
using Maybe
String
show
:
>>>
show <$> Nothing
Nothing>>>
show <$> Just 3
Just "3"
Convert from an
to an
Either
Int
Int
Either
Int
String
using show
:
>>>
show <$> Left 17
Left 17>>>
show <$> Right 17
Right "17"
Double each element of a list:
>>>
(*2) <$> [1,2,3]
[2,4,6]
Apply even
to the second element of a pair:
>>>
even <$> (2,2)
(2,True)
From Data.Functor.Contravariant
(>$) :: Contravariant f => b -> f b -> f a infixl 4 #
(>$<) :: Contravariant f => (a -> b) -> f b -> f a infixl 4 #
This is an infix alias for contramap
.
(>$$<) :: Contravariant f => f b -> (a -> b) -> f a infixl 4 #
This is an infix version of contramap
with the arguments flipped.
($<) :: Contravariant f => f b -> b -> f a infixl 4 #
This is >$
with its arguments flipped.
From Data.Ord
From Data.Ratio
From Data.Semigroup
(<>) :: Semigroup a => a -> a -> a infixr 6 #
An associative operation.
Examples
>>>
[1,2,3] <> [4,5,6]
[1,2,3,4,5,6]
>>>
Just [1, 2, 3] <> Just [4, 5, 6]
Just [1,2,3,4,5,6]
>>>
putStr "Hello, " <> putStrLn "World!"
Hello, World!
From Prelude
($!) :: (a -> b) -> a -> b infixr 0 #
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
(/) :: Fractional a => a -> a -> a infixl 7 #
Fractional division.
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #
raise a number to an integral power