{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE UndecidableInstances #-}
#define HAS_POLY_TYPEABLE MIN_VERSION_base(4,7,0)
#define HAS_QUANTIFIED_FUNCTOR_CLASSES MIN_VERSION_base(4,18,0)
#if HAS_POLY_TYPEABLE
{-# LANGUAGE StandaloneDeriving #-}
#endif
module Data.Fix (
Fix (..),
hoistFix,
hoistFix',
foldFix,
unfoldFix,
wrapFix,
unwrapFix,
Mu (..),
hoistMu,
foldMu,
unfoldMu,
wrapMu,
unwrapMu,
Nu (..),
hoistNu,
foldNu,
unfoldNu,
wrapNu,
unwrapNu,
refold,
foldFixM,
unfoldFixM,
refoldM,
cata, ana, hylo,
cataM, anaM, hyloM,
) where
import Data.Traversable (Traversable (..))
import Prelude (Eq (..), Functor (..), Monad (..), Ord (..), Read (..), Show (..), showParen, showString, ($), (.), (=<<))
#ifdef __GLASGOW_HASKELL__
#if !HAS_POLY_TYPEABLE
import Prelude (const, error, undefined)
#endif
#endif
import Control.Monad (liftM)
import Data.Function (on)
import Data.Functor.Classes (Eq1, Ord1, Read1, Show1, readsPrec1, showsPrec1)
import Data.Hashable (Hashable (..))
import Data.Hashable.Lifted (Hashable1, hashWithSalt1)
import Data.Typeable (Typeable)
import GHC.Generics (Generic)
import Text.Read (Lexeme (Ident), Read (..), lexP, parens, prec, readS_to_Prec, step)
#if MIN_VERSION_deepseq(1,4,3)
import Control.DeepSeq (NFData (..), NFData1, rnf1)
#endif
#if HAS_POLY_TYPEABLE
import Data.Data (Data)
#else
import Data.Data
#endif
#if !HAS_QUANTIFIED_FUNCTOR_CLASSES
import Data.Functor.Classes (compare1, eq1)
#endif
newtype Fix f = Fix { forall (f :: * -> *). Fix f -> f (Fix f)
unFix :: f (Fix f) }
deriving ((forall x. Fix f -> Rep (Fix f) x)
-> (forall x. Rep (Fix f) x -> Fix f) -> Generic (Fix f)
forall x. Rep (Fix f) x -> Fix f
forall x. Fix f -> Rep (Fix f) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall (f :: * -> *) x. Rep (Fix f) x -> Fix f
forall (f :: * -> *) x. Fix f -> Rep (Fix f) x
$cfrom :: forall (f :: * -> *) x. Fix f -> Rep (Fix f) x
from :: forall x. Fix f -> Rep (Fix f) x
$cto :: forall (f :: * -> *) x. Rep (Fix f) x -> Fix f
to :: forall x. Rep (Fix f) x -> Fix f
Generic)
hoistFix :: Functor f => (forall a. f a -> g a) -> Fix f -> Fix g
hoistFix :: forall (f :: * -> *) (g :: * -> *).
Functor f =>
(forall a. f a -> g a) -> Fix f -> Fix g
hoistFix forall a. f a -> g a
nt = Fix f -> Fix g
go where go :: Fix f -> Fix g
go (Fix f (Fix f)
f) = g (Fix g) -> Fix g
forall (f :: * -> *). f (Fix f) -> Fix f
Fix (f (Fix g) -> g (Fix g)
forall a. f a -> g a
nt ((Fix f -> Fix g) -> f (Fix f) -> f (Fix g)
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Fix f -> Fix g
go f (Fix f)
f))
hoistFix' :: Functor g => (forall a. f a -> g a) -> Fix f -> Fix g
hoistFix' :: forall (g :: * -> *) (f :: * -> *).
Functor g =>
(forall a. f a -> g a) -> Fix f -> Fix g
hoistFix' forall a. f a -> g a
nt = Fix f -> Fix g
go where go :: Fix f -> Fix g
go (Fix f (Fix f)
f) = g (Fix g) -> Fix g
forall (f :: * -> *). f (Fix f) -> Fix f
Fix ((Fix f -> Fix g) -> g (Fix f) -> g (Fix g)
forall a b. (a -> b) -> g a -> g b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Fix f -> Fix g
go (f (Fix f) -> g (Fix f)
forall a. f a -> g a
nt f (Fix f)
f))
foldFix :: Functor f => (f a -> a) -> Fix f -> a
foldFix :: forall (f :: * -> *) a. Functor f => (f a -> a) -> Fix f -> a
foldFix f a -> a
f = Fix f -> a
go where go :: Fix f -> a
go = f a -> a
f (f a -> a) -> (Fix f -> f a) -> Fix f -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Fix f -> a) -> f (Fix f) -> f a
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Fix f -> a
go (f (Fix f) -> f a) -> (Fix f -> f (Fix f)) -> Fix f -> f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Fix f -> f (Fix f)
forall (f :: * -> *). Fix f -> f (Fix f)
unFix
unfoldFix :: Functor f => (a -> f a) -> a -> Fix f
unfoldFix :: forall (f :: * -> *) a. Functor f => (a -> f a) -> a -> Fix f
unfoldFix a -> f a
f = a -> Fix f
go where go :: a -> Fix f
go = f (Fix f) -> Fix f
forall (f :: * -> *). f (Fix f) -> Fix f
Fix (f (Fix f) -> Fix f) -> (a -> f (Fix f)) -> a -> Fix f
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> Fix f) -> f a -> f (Fix f)
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> Fix f
go (f a -> f (Fix f)) -> (a -> f a) -> a -> f (Fix f)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> f a
f
wrapFix :: f (Fix f) -> Fix f
wrapFix :: forall (f :: * -> *). f (Fix f) -> Fix f
wrapFix = f (Fix f) -> Fix f
forall (f :: * -> *). f (Fix f) -> Fix f
Fix
unwrapFix :: Fix f -> f (Fix f)
unwrapFix :: forall (f :: * -> *). Fix f -> f (Fix f)
unwrapFix = Fix f -> f (Fix f)
forall (f :: * -> *). Fix f -> f (Fix f)
unFix
instance Eq1 f => Eq (Fix f) where
#if HAS_QUANTIFIED_FUNCTOR_CLASSES
Fix f (Fix f)
a == :: Fix f -> Fix f -> Bool
== Fix f (Fix f)
b = f (Fix f)
a f (Fix f) -> f (Fix f) -> Bool
forall a. Eq a => a -> a -> Bool
== f (Fix f)
b
#else
Fix a == Fix b = eq1 a b
#endif
instance Ord1 f => Ord (Fix f) where
#if HAS_QUANTIFIED_FUNCTOR_CLASSES
compare :: Fix f -> Fix f -> Ordering
compare (Fix f (Fix f)
a) (Fix f (Fix f)
b) = f (Fix f) -> f (Fix f) -> Ordering
forall a. Ord a => a -> a -> Ordering
compare f (Fix f)
a f (Fix f)
b
min :: Fix f -> Fix f -> Fix f
min (Fix f (Fix f)
a) (Fix f (Fix f)
b) = f (Fix f) -> Fix f
forall (f :: * -> *). f (Fix f) -> Fix f
Fix (f (Fix f) -> f (Fix f) -> f (Fix f)
forall a. Ord a => a -> a -> a
min f (Fix f)
a f (Fix f)
b)
max :: Fix f -> Fix f -> Fix f
max (Fix f (Fix f)
a) (Fix f (Fix f)
b) = f (Fix f) -> Fix f
forall (f :: * -> *). f (Fix f) -> Fix f
Fix (f (Fix f) -> f (Fix f) -> f (Fix f)
forall a. Ord a => a -> a -> a
max f (Fix f)
a f (Fix f)
b)
Fix f (Fix f)
a >= :: Fix f -> Fix f -> Bool
>= Fix f (Fix f)
b = f (Fix f)
a f (Fix f) -> f (Fix f) -> Bool
forall a. Ord a => a -> a -> Bool
>= f (Fix f)
b
Fix f (Fix f)
a > :: Fix f -> Fix f -> Bool
> Fix f (Fix f)
b = f (Fix f)
a f (Fix f) -> f (Fix f) -> Bool
forall a. Ord a => a -> a -> Bool
> f (Fix f)
b
Fix f (Fix f)
a < :: Fix f -> Fix f -> Bool
< Fix f (Fix f)
b = f (Fix f)
a f (Fix f) -> f (Fix f) -> Bool
forall a. Ord a => a -> a -> Bool
< f (Fix f)
b
Fix f (Fix f)
a <= :: Fix f -> Fix f -> Bool
<= Fix f (Fix f)
b = f (Fix f)
a f (Fix f) -> f (Fix f) -> Bool
forall a. Ord a => a -> a -> Bool
<= f (Fix f)
b
#else
compare (Fix a) (Fix b) = compare1 a b
#endif
instance Show1 f => Show (Fix f) where
showsPrec :: Int -> Fix f -> ShowS
showsPrec Int
d (Fix f (Fix f)
a) =
Bool -> ShowS -> ShowS
showParen (Int
d Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
11)
(ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$ String -> ShowS
showString String
"Fix "
ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> f (Fix f) -> ShowS
forall (f :: * -> *) a. (Show1 f, Show a) => Int -> f a -> ShowS
showsPrec1 Int
11 f (Fix f)
a
#ifdef __GLASGOW_HASKELL__
instance Read1 f => Read (Fix f) where
readPrec :: ReadPrec (Fix f)
readPrec = ReadPrec (Fix f) -> ReadPrec (Fix f)
forall a. ReadPrec a -> ReadPrec a
parens (ReadPrec (Fix f) -> ReadPrec (Fix f))
-> ReadPrec (Fix f) -> ReadPrec (Fix f)
forall a b. (a -> b) -> a -> b
$ Int -> ReadPrec (Fix f) -> ReadPrec (Fix f)
forall a. Int -> ReadPrec a -> ReadPrec a
prec Int
10 (ReadPrec (Fix f) -> ReadPrec (Fix f))
-> ReadPrec (Fix f) -> ReadPrec (Fix f)
forall a b. (a -> b) -> a -> b
$ do
Ident String
"Fix" <- ReadPrec Lexeme
lexP
(f (Fix f) -> Fix f) -> ReadPrec (f (Fix f)) -> ReadPrec (Fix f)
forall a b. (a -> b) -> ReadPrec a -> ReadPrec b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap f (Fix f) -> Fix f
forall (f :: * -> *). f (Fix f) -> Fix f
Fix (ReadPrec (f (Fix f)) -> ReadPrec (f (Fix f))
forall a. ReadPrec a -> ReadPrec a
step ((Int -> ReadS (f (Fix f))) -> ReadPrec (f (Fix f))
forall a. (Int -> ReadS a) -> ReadPrec a
readS_to_Prec Int -> ReadS (f (Fix f))
forall (f :: * -> *) a. (Read1 f, Read a) => Int -> ReadS (f a)
readsPrec1))
#endif
instance Hashable1 f => Hashable (Fix f) where
#if MIN_VERSION_hashable(1,5,0)
hash (Fix x) = hash x
hashWithSalt salt (Fix x) = hashWithSalt salt x
#else
hashWithSalt :: Int -> Fix f -> Int
hashWithSalt Int
salt = Int -> f (Fix f) -> Int
forall (f :: * -> *) a.
(Hashable1 f, Hashable a) =>
Int -> f a -> Int
hashWithSalt1 Int
salt (f (Fix f) -> Int) -> (Fix f -> f (Fix f)) -> Fix f -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Fix f -> f (Fix f)
forall (f :: * -> *). Fix f -> f (Fix f)
unFix
#endif
#if MIN_VERSION_deepseq(1,4,3)
instance NFData1 f => NFData (Fix f) where
#if MIN_VERSION_deepseq(1,5,0)
rnf (Fix a) = rnf a
#else
rnf :: Fix f -> ()
rnf = f (Fix f) -> ()
forall (f :: * -> *) a. (NFData1 f, NFData a) => f a -> ()
rnf1 (f (Fix f) -> ()) -> (Fix f -> f (Fix f)) -> Fix f -> ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Fix f -> f (Fix f)
forall (f :: * -> *). Fix f -> f (Fix f)
unFix
#endif
#endif
#ifdef __GLASGOW_HASKELL__
#if HAS_POLY_TYPEABLE
deriving instance Typeable Fix
deriving instance (Typeable f, Data (f (Fix f))) => Data (Fix f)
#else
instance Typeable1 f => Typeable (Fix f) where
typeOf t = mkTyConApp fixTyCon [typeOf1 (undefined `asArgsTypeOf` t)]
where asArgsTypeOf :: f a -> Fix f -> f a
asArgsTypeOf = const
fixTyCon :: TyCon
#if MIN_VERSION_base(4,4,0)
fixTyCon = mkTyCon3 "recursion-schemes" "Data.Functor.Foldable" "Fix"
#else
fixTyCon = mkTyCon "Data.Functor.Foldable.Fix"
#endif
{-# NOINLINE fixTyCon #-}
instance (Typeable1 f, Data (f (Fix f))) => Data (Fix f) where
gfoldl f z (Fix a) = z Fix `f` a
toConstr _ = fixConstr
gunfold k z c = case constrIndex c of
1 -> k (z (Fix))
_ -> error "gunfold"
dataTypeOf _ = fixDataType
fixConstr :: Constr
fixConstr = mkConstr fixDataType "Fix" [] Prefix
fixDataType :: DataType
fixDataType = mkDataType "Data.Functor.Foldable.Fix" [fixConstr]
#endif
#endif
newtype Mu f = Mu { forall (f :: * -> *). Mu f -> forall a. (f a -> a) -> a
unMu :: forall a. (f a -> a) -> a }
instance (Functor f, Eq1 f) => Eq (Mu f) where
== :: Mu f -> Mu f -> Bool
(==) = Fix f -> Fix f -> Bool
forall a. Eq a => a -> a -> Bool
(==) (Fix f -> Fix f -> Bool) -> (Mu f -> Fix f) -> Mu f -> Mu f -> Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` (f (Fix f) -> Fix f) -> Mu f -> Fix f
forall (f :: * -> *) a. (f a -> a) -> Mu f -> a
foldMu f (Fix f) -> Fix f
forall (f :: * -> *). f (Fix f) -> Fix f
Fix
instance (Functor f, Ord1 f) => Ord (Mu f) where
compare :: Mu f -> Mu f -> Ordering
compare = Fix f -> Fix f -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Fix f -> Fix f -> Ordering)
-> (Mu f -> Fix f) -> Mu f -> Mu f -> Ordering
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` (f (Fix f) -> Fix f) -> Mu f -> Fix f
forall (f :: * -> *) a. (f a -> a) -> Mu f -> a
foldMu f (Fix f) -> Fix f
forall (f :: * -> *). f (Fix f) -> Fix f
Fix
instance (Functor f, Show1 f) => Show (Mu f) where
showsPrec :: Int -> Mu f -> ShowS
showsPrec Int
d Mu f
f = Bool -> ShowS -> ShowS
showParen (Int
d Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
10) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$
String -> ShowS
showString String
"unfoldMu unFix " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Fix f -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
11 ((f (Fix f) -> Fix f) -> Mu f -> Fix f
forall (f :: * -> *) a. (f a -> a) -> Mu f -> a
foldMu f (Fix f) -> Fix f
forall (f :: * -> *). f (Fix f) -> Fix f
Fix Mu f
f)
#ifdef __GLASGOW_HASKELL__
instance (Functor f, Read1 f) => Read (Mu f) where
readPrec :: ReadPrec (Mu f)
readPrec = ReadPrec (Mu f) -> ReadPrec (Mu f)
forall a. ReadPrec a -> ReadPrec a
parens (ReadPrec (Mu f) -> ReadPrec (Mu f))
-> ReadPrec (Mu f) -> ReadPrec (Mu f)
forall a b. (a -> b) -> a -> b
$ Int -> ReadPrec (Mu f) -> ReadPrec (Mu f)
forall a. Int -> ReadPrec a -> ReadPrec a
prec Int
10 (ReadPrec (Mu f) -> ReadPrec (Mu f))
-> ReadPrec (Mu f) -> ReadPrec (Mu f)
forall a b. (a -> b) -> a -> b
$ do
Ident String
"unfoldMu" <- ReadPrec Lexeme
lexP
Ident String
"unFix" <- ReadPrec Lexeme
lexP
(Fix f -> Mu f) -> ReadPrec (Fix f) -> ReadPrec (Mu f)
forall a b. (a -> b) -> ReadPrec a -> ReadPrec b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Fix f -> f (Fix f)) -> Fix f -> Mu f
forall (f :: * -> *) a. Functor f => (a -> f a) -> a -> Mu f
unfoldMu Fix f -> f (Fix f)
forall (f :: * -> *). Fix f -> f (Fix f)
unFix) (ReadPrec (Fix f) -> ReadPrec (Fix f)
forall a. ReadPrec a -> ReadPrec a
step ReadPrec (Fix f)
forall a. Read a => ReadPrec a
readPrec)
#endif
hoistMu :: (forall a. f a -> g a) -> Mu f -> Mu g
hoistMu :: forall (f :: * -> *) (g :: * -> *).
(forall a. f a -> g a) -> Mu f -> Mu g
hoistMu forall a. f a -> g a
n (Mu forall a. (f a -> a) -> a
mk) = (forall a. (g a -> a) -> a) -> Mu g
forall (f :: * -> *). (forall a. (f a -> a) -> a) -> Mu f
Mu ((forall a. (g a -> a) -> a) -> Mu g)
-> (forall a. (g a -> a) -> a) -> Mu g
forall a b. (a -> b) -> a -> b
$ \g a -> a
roll -> (f a -> a) -> a
forall a. (f a -> a) -> a
mk (g a -> a
roll (g a -> a) -> (f a -> g a) -> f a -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f a -> g a
forall a. f a -> g a
n)
foldMu :: (f a -> a) -> Mu f -> a
foldMu :: forall (f :: * -> *) a. (f a -> a) -> Mu f -> a
foldMu f a -> a
f (Mu forall a. (f a -> a) -> a
mk) = (f a -> a) -> a
forall a. (f a -> a) -> a
mk f a -> a
f
unfoldMu :: Functor f => (a -> f a) -> a -> Mu f
unfoldMu :: forall (f :: * -> *) a. Functor f => (a -> f a) -> a -> Mu f
unfoldMu a -> f a
f a
x = (forall a. (f a -> a) -> a) -> Mu f
forall (f :: * -> *). (forall a. (f a -> a) -> a) -> Mu f
Mu ((forall a. (f a -> a) -> a) -> Mu f)
-> (forall a. (f a -> a) -> a) -> Mu f
forall a b. (a -> b) -> a -> b
$ \f a -> a
mk -> (f a -> a) -> (a -> f a) -> a -> a
forall (f :: * -> *) b a.
Functor f =>
(f b -> b) -> (a -> f a) -> a -> b
refold f a -> a
mk a -> f a
f a
x
wrapMu :: Functor f => f (Mu f) -> Mu f
wrapMu :: forall (f :: * -> *). Functor f => f (Mu f) -> Mu f
wrapMu f (Mu f)
fx = (forall a. (f a -> a) -> a) -> Mu f
forall (f :: * -> *). (forall a. (f a -> a) -> a) -> Mu f
Mu ((forall a. (f a -> a) -> a) -> Mu f)
-> (forall a. (f a -> a) -> a) -> Mu f
forall a b. (a -> b) -> a -> b
$ \f a -> a
f -> f a -> a
f ((Mu f -> a) -> f (Mu f) -> f a
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((f a -> a) -> Mu f -> a
forall (f :: * -> *) a. (f a -> a) -> Mu f -> a
foldMu f a -> a
f) f (Mu f)
fx)
unwrapMu :: Functor f => Mu f -> f (Mu f)
unwrapMu :: forall (f :: * -> *). Functor f => Mu f -> f (Mu f)
unwrapMu = (f (f (Mu f)) -> f (Mu f)) -> Mu f -> f (Mu f)
forall (f :: * -> *) a. (f a -> a) -> Mu f -> a
foldMu ((f (Mu f) -> Mu f) -> f (f (Mu f)) -> f (Mu f)
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap f (Mu f) -> Mu f
forall (f :: * -> *). Functor f => f (Mu f) -> Mu f
wrapMu)
data Nu f = forall a. Nu (a -> f a) a
instance (Functor f, Eq1 f) => Eq (Nu f) where
== :: Nu f -> Nu f -> Bool
(==) = Fix f -> Fix f -> Bool
forall a. Eq a => a -> a -> Bool
(==) (Fix f -> Fix f -> Bool) -> (Nu f -> Fix f) -> Nu f -> Nu f -> Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` (f (Fix f) -> Fix f) -> Nu f -> Fix f
forall (f :: * -> *) a. Functor f => (f a -> a) -> Nu f -> a
foldNu f (Fix f) -> Fix f
forall (f :: * -> *). f (Fix f) -> Fix f
Fix
instance (Functor f, Ord1 f) => Ord (Nu f) where
compare :: Nu f -> Nu f -> Ordering
compare = Fix f -> Fix f -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Fix f -> Fix f -> Ordering)
-> (Nu f -> Fix f) -> Nu f -> Nu f -> Ordering
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` (f (Fix f) -> Fix f) -> Nu f -> Fix f
forall (f :: * -> *) a. Functor f => (f a -> a) -> Nu f -> a
foldNu f (Fix f) -> Fix f
forall (f :: * -> *). f (Fix f) -> Fix f
Fix
instance (Functor f, Show1 f) => Show (Nu f) where
showsPrec :: Int -> Nu f -> ShowS
showsPrec Int
d Nu f
f = Bool -> ShowS -> ShowS
showParen (Int
d Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
10) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$
String -> ShowS
showString String
"unfoldNu unFix " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Fix f -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
11 ((f (Fix f) -> Fix f) -> Nu f -> Fix f
forall (f :: * -> *) a. Functor f => (f a -> a) -> Nu f -> a
foldNu f (Fix f) -> Fix f
forall (f :: * -> *). f (Fix f) -> Fix f
Fix Nu f
f)
#ifdef __GLASGOW_HASKELL__
instance (Functor f, Read1 f) => Read (Nu f) where
readPrec :: ReadPrec (Nu f)
readPrec = ReadPrec (Nu f) -> ReadPrec (Nu f)
forall a. ReadPrec a -> ReadPrec a
parens (ReadPrec (Nu f) -> ReadPrec (Nu f))
-> ReadPrec (Nu f) -> ReadPrec (Nu f)
forall a b. (a -> b) -> a -> b
$ Int -> ReadPrec (Nu f) -> ReadPrec (Nu f)
forall a. Int -> ReadPrec a -> ReadPrec a
prec Int
10 (ReadPrec (Nu f) -> ReadPrec (Nu f))
-> ReadPrec (Nu f) -> ReadPrec (Nu f)
forall a b. (a -> b) -> a -> b
$ do
Ident String
"unfoldNu" <- ReadPrec Lexeme
lexP
Ident String
"unFix" <- ReadPrec Lexeme
lexP
(Fix f -> Nu f) -> ReadPrec (Fix f) -> ReadPrec (Nu f)
forall a b. (a -> b) -> ReadPrec a -> ReadPrec b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Fix f -> f (Fix f)) -> Fix f -> Nu f
forall a (f :: * -> *). (a -> f a) -> a -> Nu f
unfoldNu Fix f -> f (Fix f)
forall (f :: * -> *). Fix f -> f (Fix f)
unFix) (ReadPrec (Fix f) -> ReadPrec (Fix f)
forall a. ReadPrec a -> ReadPrec a
step ReadPrec (Fix f)
forall a. Read a => ReadPrec a
readPrec)
#endif
hoistNu :: (forall a. f a -> g a) -> Nu f -> Nu g
hoistNu :: forall (f :: * -> *) (g :: * -> *).
(forall a. f a -> g a) -> Nu f -> Nu g
hoistNu forall a. f a -> g a
n (Nu a -> f a
next a
seed) = (a -> g a) -> a -> Nu g
forall (f :: * -> *) a. (a -> f a) -> a -> Nu f
Nu (f a -> g a
forall a. f a -> g a
n (f a -> g a) -> (a -> f a) -> a -> g a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> f a
next) a
seed
foldNu :: Functor f => (f a -> a) -> Nu f -> a
foldNu :: forall (f :: * -> *) a. Functor f => (f a -> a) -> Nu f -> a
foldNu f a -> a
f (Nu a -> f a
next a
seed) = (f a -> a) -> (a -> f a) -> a -> a
forall (f :: * -> *) b a.
Functor f =>
(f b -> b) -> (a -> f a) -> a -> b
refold f a -> a
f a -> f a
next a
seed
unfoldNu :: (a -> f a) -> a -> Nu f
unfoldNu :: forall a (f :: * -> *). (a -> f a) -> a -> Nu f
unfoldNu = (a -> f a) -> a -> Nu f
forall (f :: * -> *) a. (a -> f a) -> a -> Nu f
Nu
wrapNu :: Functor f => f (Nu f) -> Nu f
wrapNu :: forall (f :: * -> *). Functor f => f (Nu f) -> Nu f
wrapNu = (f (Nu f) -> f (f (Nu f))) -> f (Nu f) -> Nu f
forall a (f :: * -> *). (a -> f a) -> a -> Nu f
unfoldNu ((Nu f -> f (Nu f)) -> f (Nu f) -> f (f (Nu f))
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Nu f -> f (Nu f)
forall (f :: * -> *). Functor f => Nu f -> f (Nu f)
unwrapNu)
unwrapNu :: Functor f => Nu f -> f (Nu f)
unwrapNu :: forall (f :: * -> *). Functor f => Nu f -> f (Nu f)
unwrapNu (Nu a -> f a
f a
x) = (a -> Nu f) -> f a -> f (Nu f)
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> f a) -> a -> Nu f
forall (f :: * -> *) a. (a -> f a) -> a -> Nu f
Nu a -> f a
f) (a -> f a
f a
x)
refold :: Functor f => (f b -> b) -> (a -> f a) -> a -> b
refold :: forall (f :: * -> *) b a.
Functor f =>
(f b -> b) -> (a -> f a) -> a -> b
refold f b -> b
f a -> f a
g = a -> b
h where h :: a -> b
h = f b -> b
f (f b -> b) -> (a -> f b) -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b) -> f a -> f b
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
h (f a -> f b) -> (a -> f a) -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> f a
g
foldFixM:: (Monad m, Traversable t)
=> (t a -> m a) -> Fix t -> m a
foldFixM :: forall (m :: * -> *) (t :: * -> *) a.
(Monad m, Traversable t) =>
(t a -> m a) -> Fix t -> m a
foldFixM t a -> m a
f = Fix t -> m a
go where go :: Fix t -> m a
go = (t a -> m a
f (t a -> m a) -> m (t a) -> m a
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (m (t a) -> m a) -> (Fix t -> m (t a)) -> Fix t -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Fix t -> m a) -> t (Fix t) -> m (t a)
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> t a -> m (t b)
mapM Fix t -> m a
go (t (Fix t) -> m (t a)) -> (Fix t -> t (Fix t)) -> Fix t -> m (t a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Fix t -> t (Fix t)
forall (f :: * -> *). Fix f -> f (Fix f)
unFix
unfoldFixM :: (Monad m, Traversable t)
=> (a -> m (t a)) -> (a -> m (Fix t))
unfoldFixM :: forall (m :: * -> *) (t :: * -> *) a.
(Monad m, Traversable t) =>
(a -> m (t a)) -> a -> m (Fix t)
unfoldFixM a -> m (t a)
f = a -> m (Fix t)
go where go :: a -> m (Fix t)
go = (t (Fix t) -> Fix t) -> m (t (Fix t)) -> m (Fix t)
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM t (Fix t) -> Fix t
forall (f :: * -> *). f (Fix f) -> Fix f
Fix (m (t (Fix t)) -> m (Fix t))
-> (a -> m (t (Fix t))) -> a -> m (Fix t)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((a -> m (Fix t)) -> t a -> m (t (Fix t))
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> t a -> m (t b)
mapM a -> m (Fix t)
go (t a -> m (t (Fix t))) -> m (t a) -> m (t (Fix t))
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (m (t a) -> m (t (Fix t))) -> (a -> m (t a)) -> a -> m (t (Fix t))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> m (t a)
f
refoldM :: (Monad m, Traversable t)
=> (t b -> m b) -> (a -> m (t a)) -> (a -> m b)
refoldM :: forall (m :: * -> *) (t :: * -> *) b a.
(Monad m, Traversable t) =>
(t b -> m b) -> (a -> m (t a)) -> a -> m b
refoldM t b -> m b
phi a -> m (t a)
psi = a -> m b
go where go :: a -> m b
go = (t b -> m b
phi (t b -> m b) -> m (t b) -> m b
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (m (t b) -> m b) -> (a -> m (t b)) -> a -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((a -> m b) -> t a -> m (t b)
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> t a -> m (t b)
mapM a -> m b
go (t a -> m (t b)) -> m (t a) -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) (m (t a) -> m (t b)) -> (a -> m (t a)) -> a -> m (t b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> m (t a)
psi
cata :: Functor f => (f a -> a) -> (Fix f -> a)
cata :: forall (f :: * -> *) a. Functor f => (f a -> a) -> Fix f -> a
cata = (f a -> a) -> Fix f -> a
forall (f :: * -> *) a. Functor f => (f a -> a) -> Fix f -> a
foldFix
{-# DEPRECATED cata "Use foldFix" #-}
ana :: Functor f => (a -> f a) -> (a -> Fix f)
ana :: forall (f :: * -> *) a. Functor f => (a -> f a) -> a -> Fix f
ana = (a -> f a) -> a -> Fix f
forall (f :: * -> *) a. Functor f => (a -> f a) -> a -> Fix f
unfoldFix
{-# DEPRECATED ana "Use unfoldFix" #-}
hylo :: Functor f => (f b -> b) -> (a -> f a) -> (a -> b)
hylo :: forall (f :: * -> *) b a.
Functor f =>
(f b -> b) -> (a -> f a) -> a -> b
hylo = (f b -> b) -> (a -> f a) -> a -> b
forall (f :: * -> *) b a.
Functor f =>
(f b -> b) -> (a -> f a) -> a -> b
refold
{-# DEPRECATED hylo "Use refold" #-}
cataM :: (Monad m, Traversable t)
=> (t a -> m a) -> Fix t -> m a
cataM :: forall (m :: * -> *) (t :: * -> *) a.
(Monad m, Traversable t) =>
(t a -> m a) -> Fix t -> m a
cataM = (t a -> m a) -> Fix t -> m a
forall (m :: * -> *) (t :: * -> *) a.
(Monad m, Traversable t) =>
(t a -> m a) -> Fix t -> m a
foldFixM
{-# DEPRECATED cataM "Use foldFixM" #-}
anaM :: (Monad m, Traversable t)
=> (a -> m (t a)) -> (a -> m (Fix t))
anaM :: forall (m :: * -> *) (t :: * -> *) a.
(Monad m, Traversable t) =>
(a -> m (t a)) -> a -> m (Fix t)
anaM = (a -> m (t a)) -> a -> m (Fix t)
forall (m :: * -> *) (t :: * -> *) a.
(Monad m, Traversable t) =>
(a -> m (t a)) -> a -> m (Fix t)
unfoldFixM
{-# DEPRECATED anaM "Use unfoldFixM" #-}
hyloM :: (Monad m, Traversable t)
=> (t b -> m b) -> (a -> m (t a)) -> (a -> m b)
hyloM :: forall (m :: * -> *) (t :: * -> *) b a.
(Monad m, Traversable t) =>
(t b -> m b) -> (a -> m (t a)) -> a -> m b
hyloM = (t b -> m b) -> (a -> m (t a)) -> a -> m b
forall (m :: * -> *) (t :: * -> *) b a.
(Monad m, Traversable t) =>
(t b -> m b) -> (a -> m (t a)) -> a -> m b
refoldM
{-# DEPRECATED hyloM "Use refoldM" #-}